AMCS 610

Problem set 3 due February 18, 2014

Dr. Epstein

Reading: Read Chapters 8.1-3, and 9.1 in Lax, *Functional Analysis*. **Standard problem:** The following problems should be done, but do not have to be handed in.

1. Exercises 1 and 2 on page 76 of Lax.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

- 1. Let $\{V_1, \ldots, V_N\}$ be linearly independent vectors in a complex inner product space $(X, \langle \cdot, \cdot \rangle)$.
 - (a) Show that the matrix

$$G_{ij} = \langle V_i, V_j \rangle, \tag{1}$$

is Hermitian symmetric that is $G_{ij} = \overline{G_{ji}}$.

(b) Prove that for (v_1, \ldots, v_n) , $(w_1, \ldots, w_N) \in \mathbb{C}^N$, we have

$$\left| \sum_{i,j=1}^{N} G_{ij} v_i \overline{w}_j \right| \le \sqrt{\sum_{i,j=1}^{N} G_{ij} v_i \overline{v}_j} \sqrt{\sum_{i,j=1}^{N} G_{ij} w_i \overline{w}_j}$$
 (2)

(c) Without using computation, provide a conceptual proof that G_{ij} positive definite, i.e., there is a positive constant C so that for $(v_1, \ldots, v_n) \in \mathbb{C}^N$, we have

$$\sum_{i,j=1}^{N} G_{ij} v_i \overline{v}_j \ge C \sum_{j=1}^{N} |v_j|^2.$$
(3)

- (d) Show that G_{ij} is invertible.
- 2. Suppose that $f \in C^0([0,1])$ and for every function $\varphi \in \mathscr{C}_0^\infty((0,1))$, we have

$$\int_{0}^{1} f(x)\varphi(x)dx = 0,$$
(4)

prove that f = 0 in $C^0([0, 1])$. Now show that if $f \in L^2([0, 1])$ and this condition holds for all $\varphi \in \mathscr{C}^{\infty}_0((0, 1))$, then f = 0 in $L^2([0, 1])$. Remember that $L^2([0, 1])$ is the closure of $C^0([0, 1])$ with respect to the L^2 -norm. The proofs are completely different in the two cases!

- 3. Let $Y = \{u \in \mathscr{C}^{\infty}(\overline{D}_1) : \Delta u = 0\}.$
 - (a) We let \overline{Y} denote the closure of Y with respect to the L^2 -norm on the unit disk:

$$||u||_2^2 = \int_{D_1} |u(x, y)|^2 dx dy.$$
 (5)

Show that if $v \in \overline{Y}$ then v has representative that is smooth in the interior of the unit disk and that $\Delta v = 0$, in the interior of D_1 . Hint: Use the Poisson formula.

- (b) Describe the radial functions in Y^{\perp} , that is functions of $r = \sqrt{x^2 + y^2}$ that are orthogonal to \overline{Y} .
- 4. A function u, which belongs to $L^2([-R, R])$ for all R > 0, is weakly constant if

$$\int u(x)\partial_x \varphi(x) = 0 \tag{6}$$

for every $\varphi \in \mathscr{C}_0^{\infty}(\mathbb{R})$. Show that a weakly constant function is smooth and constant, or more accurately: has a smooth representative, which is constant. Hint: Show that if u(x) is weakly constant then so is au(x-y) for all $a, y \in \mathbb{R}$.

5. For $f \in \mathscr{C}_0^{\infty}(\mathbb{R})$, show that |f| has a weak derivative, which can be represented by a function g(x) that satisfies

$$|g(x)| \le |\partial_x f(x)|. \tag{7}$$

The statement that the weak derivative is *represented by g* means that for all $\varphi \in \mathscr{C}_0^{\infty}(\mathbb{R})$ we have

$$\int_{\mathbb{R}} |f(x)| \partial_x \varphi(x) dx = -\int_{\mathbb{R}} g(x) \varphi(x) dx.$$
 (8)

Hint: Consider $\sqrt{f^2(x) + \epsilon^2}$. Compute the weak derivative of |x|.

6. Suppose that we define a weak solution of the wave equation,

$$\partial_x^2 u(x,t) - \partial_t^2 u(x,t) = 0, \tag{9}$$

to be a function that is square integrable in $[-R, R] \times [-R, R]$ for any R, and such that

$$\int_{\mathbb{R}^2} u(x,t)(\partial_x^2 \varphi(x,t) - \partial_t^2 \varphi(x,t)) dx dt = 0,$$
(10)

for any function $\varphi \in \mathscr{C}^{\infty}_{0}(\mathbb{R}^{2})$. Show that if $f \in L^{2}(\mathbb{R})$, then

$$u(x,t) = f(x-t) \text{ and } v(x,t) = f(x+t)$$
 (11)

are weak solutions of the wave equation. Hint: Approximate!