AMCS 610

Problem set 2 due February 11, 2014

Dr. Epstein

Reading: Read Chapters 3.2-3.3 (especially the proof of Theorem 8), 4.2, 5.1-5.2, 6.1-6.3 in Lax, *Functional Analysis*.

Standard problem: The following problems should be done, but do not have to be handed in.

- 1. Prove Theorem 4 in §3.2 of Lax.
- 2. Suppose that (X, d) is a metric space. Show that if $\lim_{n\to\infty} x_n = x^*$, then, for any $x \in X$, we also have that $\lim_{n\to\infty} d(x, x_n) = d(x, x^*)$.
- 3. For $1 \le p \le \infty$, prove that the normed vector space ℓ_p is a Banach space.

Homework assignment: The solutions to the following problems should be carefully written up and handed in.

1. Prove that in any real normed linear space $(X, \|\cdot\|)$, the open and closed unit balls

$$B_1 = \{x \in X : ||x|| < 1\}, \quad \overline{B}_1 = \{x \in X : ||x|| \le 1\}$$
 (1)

are convex and have non-empty interior. The unit ball is *strictly convex*, if, whenever ||x|| = ||y|| = 1 and $x \neq y$, then

$$\left\|\frac{x+y}{2}\right\| < 1. \tag{2}$$

Show that the unit ball in ℓ_2 is strictly convex, but the unit ball in ℓ_1 is not.

2. A bounded sequence $\langle c_j \rangle$ is Cesaro summable if

$$\lim_{n \to \infty} \frac{c_1 + \dots + c_n}{n} \text{ exists.}$$
 (3)

Show that a Banach limit LIM can be defined on ℓ_∞ so that if $< c_j >$ is Cesaro summable then

$$\underset{j \to \infty}{\text{LIM}} c_j = \lim_{n \to \infty} \frac{c_1 + \dots + c_n}{n}.$$
 (4)

3. Suppose that X is a Banach space and $Y \subset X$ is a closed subspace. Show that the quotient space X/Y, with the quotient norm

$$||[x]||_{X/Y} = \inf_{x \in [x]} ||x||_X, \tag{5}$$

is complete.

- 4. Prove that every finite dimensional subspace of a normed vector space is closed. Hint: Use the fact that all norms on a finite dimensional vector space are equivalent to show that every finite dimensional subspace is complete.
- 5. Let \mathcal{P} denote the subspace of $\mathcal{C}^0([0,1])$ defined by polynomials restricted to [0,1]. Suppose that $\ell: \mathcal{P} \to \mathbb{R}$ is a linear function with the property that

$$p(x) \ge 0 \text{ for } x \in [0, 1] \Rightarrow \ell(p) \ge 0. \tag{6}$$

Show that ℓ extends to define a linear functional , $\tilde{\ell}$, on all of $\mathscr{C}^0([0,1])$, satisfying an estimate of the form

$$|\tilde{\ell}(f)| \le C \|f\|_{\infty}. \tag{7}$$

Can you find a closed form expression for C?

- 6. Let $Y \subset \ell_{\infty}$ be the subspace of sequences that are eventually zero (only finitely many terms non-zero). Find the closure of Y with respect to the ℓ_{∞} -norm.
- 7. Prove that ℓ_1 has a countable dense subset, but ℓ_{∞} does not.
- 8. [This problem assumes an elementary knowledge of holomorphic functions of one complex variable.] Let $\mathcal{H}^2(D_1)$ denote the closure of bounded holomorphic functions on the unit disk with respect to the L^2 -norm

$$||f||_2^2 = \int_{D_1} |f(x, y)|^2 dx dy = \lim_{r \to 1^+} \iint_{D_r} |f(x, y)|^2 dx dy < \infty.$$
 (8)

 $L^2(D_1)$ is defined as the closure of $C^0(\overline{D}_1)$ with respect to the L^2 -norm.

- (a) Show that $f \in \mathcal{H}^2(D_1)$ is holomorphic in int D_1 . That is, every element of $\mathcal{H}^2(D_1)$ has a representative that is holomorphic in int D_1 .
- (b) Show that if f is a square integrable function in D_1 , which is holomorphic in the interior of D_1 , then $f \in \mathcal{H}^2(D_1)$. (You need to show that f is an L^2 -limit of functions in $C^0(\overline{D}_1)$.)

(c) Prove that for any $k \in \mathbb{N}$, there is a bounded linear functional ℓ_k defined on $L^2(D_1)$, so that if $f \in \mathcal{H}^2(D_1)$, then

$$\ell_k(f) = \partial_z^k f(0). \tag{9}$$