
AMCS 610
Problem set 1 due February 4, 2014

Dr. Epstein

Reading: Read Chapters 1, 2, and 3 in Lax,Functional Analysis.
Standard problem: The following problems should be done, but do not have to be
handed in.

1. Suppose thatK , L ⊂ X, a real vector space, are convex sets. Prove thatK + L is
also convex.

2. Let X, Y be real vector spaces andM : X → Y a linear map. Prove that ifK ⊂ X
is convex, thenM(K ) is convex, and ifL ⊂ Y is convex, thenM−1(L) is convex.

Homework assignment: The solutions to the following problems should be carefully
written up and handed in.

1. A linear function from a real vector spaceX to R is just a linear mapℓ : X → R.

Show that a linear functionℓ : R
n → R is continuous with respect to the topology

defined by any norm onRn .

2. Let X be a finite dimensional vector space, andY ⊂ X a proper subspace. Let
{y1, . . . , yk} be a basis forY. If dim X = n, then show that there are vectors
{x1, . . . , xn−k} so that{y1, . . . , yk, x1, . . . , xn−k} is a basis forX. Conclude that

dim X = dimY + dim(X/Y ). (1)

3. Suppose thatX is a finite dimensional real vector space.

(a) Show that the set,X ′, of linear functions onX, with its natural vector space
structure, has the same dimension asX. If Y ⊂ X is a subspace, then the
dim(X/Y ) is called thecodimension of Y, and

Y ⊥ = {ℓ ∈ X ′ : ℓ(y) = 0 for all y ∈ Y }. (2)

(b) Show thatY ⊥ is a subspace ofX ′ and dim(X/Y ) = dimY ⊥.
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(c) Let d ∈ N, andPd denote polynomials with real coefficients of order at most
d. Show that the functionals

ℓ j (p) = ∂ j
x p(0) for j = 0, . . . , d (3)

are a basis forP′
d . For 0≤ d ′ < d use this basis to describeP

⊥
d ′ .

4. Let X be a finite dimensional vector space overC, and let XR denote the vector
spaceX, but with the scalar multiplication restricted to the real numbers. Prove that
dimR XR = 2 dimC X. Show thatz 7→ z̄ is a linear map fromCR → CR, but not
from C → C.

5. Suppose thatK ⊂ R
2 is a convex set. A pointx lies on the boundary ofK , bK , if,

for anyǫ > 0, Bǫ(x) ∩ K 6= ∅, and Bǫ(x) ∩ K c 6= ∅. Show that ifx ∈ bK , then
there is a linear functionℓx : R

2 → R so that

ℓx(x) ≥ ℓx(y) for all y ∈ K \ {x}. (4)

When does the strict inequality hold for ally ∈ K \{x}? The set{y : ℓx(y) = ℓx(x)}

is called a supporting line. Is the supporting line always unique?

6. Letℓ : R
2 → R be a linear function. A set of the form

Hℓ,c = {x ∈ R
2 : ℓ(x) > c} (5)

is called an open half space. IfK ⊂ R
2 is a closed convex set, then show that

K =
⋂

Hℓ,c⊃K

Hℓ,c. (6)

That is,K is the intersection of all the open half spaces that contain it. Prove that a
closed unbounded, proper convex subset ofR

2 satisfies exactly one of the following
criteria:

(a) K is a closed half space.

(b) K is the region between two parallel lines.

(c) K lies in a proper cone (the intersection of two half-spaces with non-parallel
boundaries).
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7. Let X = R
2 andY = {(x, 0) : x ∈ R}, be a subspace. Suppose that we define a

linear functionℓ onY by settingℓ((1, 0)) = 1. For 1≤ p < ∞, define the norms

‖(x, y)‖p = (x p + y p)
1
p , (7)

and
‖(x, y)‖∞ = max{|x |, |y|}. (8)

This linear function onY satisfies

|ℓ((x, 0))| ≤ ‖(x, 0)‖p, (9)

for all 1 ≤ p ≤ ∞. We can linearly extendℓ to all of R
2 by setting

ℓ((0, 1)) = β. (10)

Denote this extension byℓβ . For each 1≤ p ≤ ∞, find the values ofβ so that

|ℓβ((x, y))| ≤ ‖(x, y)‖p, for all (x, y) ∈ R
2. (11)

We can define another family of norms, for 0< a < ∞, by setting

Na(x, y) =

√

x2 + a2y2. (12)

For each 0< a < ∞, find the values ofβ so that

|ℓβ((x, y))| ≤ Na(x, y), for all (x, y) ∈ R
2. (13)

8. Show for 0< q < 1, the functiondq : R
n × R

n → [0, ∞) defined by

dq(x, y) =

n
∑

j=1

|xi − yi |
q (14)

defines a metric onRn. How aboutdq(x, y)
1
q ? What is

lim
q→0+

dq(x, y)? (15)
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9. Let V be a vector space, possibly infinite dimensional.

(a) Show that ifX = {xα : α ∈ A} ⊂ V is a set of linearly independent vectors,
then there is a basis forV of the form{xα : α ∈ A} ∪ {yβ : β ∈ B}. Hint:
Let W consists of sets of linearly independent vectors inV, with the partial
ordered defined by inclusion, then apply Zorn’s lemma to prove this assertion.

(b) Use this result to show that ifU ⊂ V is a subspace ofV, then there exists
another subspaceW of V so thatV = U ⊕ W, and an isomorphism

ϕ : W −→ V/U. (16)
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