
MTH 320: Presentation problems
Chapter 1:

//////1.4.1 (*)1 Prove that there is a real number α satisfying α4 = 2, using proof
ideas from Theorem 1.4.5. There is a hint towards the end of that proof.
(Presented by AC, Monday, March 18.)

1.4.2 (**) Prove that the set { k2n : k, n ∈ N} is dense in R.

//////1.4.3 (***) Show that the collection of all finite subsets of N is a countable set.
(Presented by AS, Friday, February 1)

Chapter 2:

//////2.3.1 (*) Does Theorem 2.3.4(i) remain true if all of the inequalities are assume
to be strict? If so, prove it. If not, find two counter examples. (Presented
by RV, Friday, February 8)

//////2.3.2 (**) Show that if (xn) is a convergent sequence, then the sequence (yn)
defined by taking the averages

yn =
x1 + · · ·+ xn

n

also converges to the same limit. Using the sequence of partial sums
xn =

∑n
i=0(−1)n, show that the sequence of averages converges in certain

cases even when (xn) does not. This provides a generalization of our
classical notion of convergence.

//////2.3.3 (*) Consider the doubly indexed array am,n =
m

m+ n
.

(a) What should lim
m,n→∞

am,n represent? Compute (no proof necessary)

the iterated limits

lim
m→∞

lim
n→∞

am,n and lim
n→∞

lim
m→∞

am,n.

(b) Formulate a rigorous definition for the statement lim
m,n→∞

am,n = L.

//////2.4.1 (**) Let x1 = 1, x2 =
√

2, x2 =
√

2
√

3, and in general let

xn =

√
2

√
3

√
4 · · ·
√
n.

If (xn) converges, prove it. If you proved this, do you have a guess for the
limit? If the sequences diverges, prove it. (Presented by AB.)

1If you make some mistakes with ** or *** difficulty problems, it won’t be counted against
you as much as with * difficulty problems.
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2.5.1 (** but requires good understanding of sequences) Let (xn) be a sequence
of real numbers. Prove that xn → L if and only if for all subsequences
(xni

) of (xn), there is a subsequence (xnik
) of (xni

) that converges to L.

//////2.6.1 (*) Assume (an) and (bn) are Cauchy sequences. Prove cn = |an − bn| is
a Cauchy sequence. (Presented by AG, Friday, February 8)

2.7.1 (**) (Dirichlet’s test) If the partial sums of
∑∞
n=1 xn are bounded (but not

necessarily convergent... think of an example?), and if (yn) is a sequence
satisfying y1 ≥ y2 ≥ · · · ≥ 0 with lim yn = 0, then the series

∑∞
n=1 xnyn

converges. Proof sketch:

(a) Let M > 0 be an upper bound for the partial sums of
∑∞
n=1 xn. Use

summation by parts (Hw5) to show that∣∣∣∣∣
n∑

j=m+1

xjyj

∣∣∣∣∣ ≤ 2M |ym+1|.

(b) Prove Dirichlet’s Test just stated.

(c) Show how the alternating series test (Hw5) can be derived as a special
case of Dirichlet’s test.

2.7.2 (**) (Abel’s test) If
∑∞
n=1 xn converges, and if (yn) is a sequence satisfying

y1 ≥ y2 ≥ · · · ≥ 0, then
∑∞
n=1 xnyn converges. A proof sketch:

(a) Assume that
∑∞
n=1 an has partial sums that are bounded by a con-

stant A > 0, and assume b1 ≥ b2 ≥ · · · ≥ 0. Use summation by parts
(Hw5) to show ∣∣∣∣∣

n∑
j=1

ajbj

∣∣∣∣∣ ≤ 2Ab1.

(b) For fixed m ∈ N, apply part (a) to
∑n
j=m+1 xjyj by setting an =

xm+n and bn = ym+n. Argue that an upper bound on the partial
sums of

∑∞
n=1 an can be made arbitrarily small by taking large m.

2.8.1 (***) (Fubini-Tonelli Theorem) Let {aij : i, j ∈ N} be a doubly indexed
array of real numbers. If

∞∑
i=1

∞∑
j=1

|aij |

converges, then
∑∞
i=1

∑∞
j=1 aij converges and moreover

∞∑
i=1

∞∑
j=1

aij =

∞∑
j=1

∞∑
i=1

aij = lim
n→∞

n∑
i=1

n∑
j=1

aij .
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2.8.2 (**) Give an example of a doubly indexed array {aij : i, j ∈ N} such that
no two of the following are equal:

∞∑
i=1

∞∑
j=1

aij ,

∞∑
j=1

∞∑
i=1

aij , and lim
n→∞

n∑
i=1

n∑
j=1

aij .

As a bonus (not necessary for the presentation) find an array so that all
three of the above limits are finite. As another bonus, can you make
one equal to infinity, another negative infinity, and the third zero? Is it
possible to make all three different but the same sign (positive, negative,
or zero)?

Chapter 3:

//////3.1.1 (***) Construct a Cantor set that does not have zero length (but still
nowhere dense). What is its dimension, using a heuristic like the table on
page 78? (Presented by NT on 2/20.)

3.2.1 (***)

(a) It is a fact that in R, the only closed and open sets are ∅ and R.
What are some sets in R that are both Fσ and Gδ?

(b) Is the set Q a Gδ set? Is it Fσ? What about the irrational numbers,
R \Q? Prove all four of the claims.

(c) Can you construct a set that is not closed, open, Fσ, nor Gδ? (Or
must all subsets of R be either open, closed, Fσ or Gδ?)

//////3.2.2 (*or ***) Prove or find a counterexample: R is the only open set containing
Q. (Presented by IM on 2/20.)

//////3.3.1 (**) Show the Cantor set is compact. (Presented by BW.)

3.3.2 (*) For two subsets of real numbers A,B define

A+B = {a+ b : a ∈ A, b ∈ B}.

Show that C + C = [0, 2], where C is the Cantor set. (Proof outline
provided in exercises of ch.3 section 3.)

3.3.3 (**) Call a set “clompact”if every closed cover has a finite subcover. Char-
acterize the clompact subsets of R.

3.4.1 (*) Let Q = {r1, r2, . . . } be an enumeration of the rational numbers. Let
εn = 1/2n. Define

O =

∞⋃
n=1

Bεn(rn).

Show that the complement of O is closed, nonempty, and consists of only
irrational numbers.
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3.4.2 (**) If A is connected, does that imply Ā is connected? If A is perfect,
does that imply Ā is perfect?

3.5.1 (**) If A is Fσ, does that imply Ā is Fσ? If A is Gδ, does that imply Ā is
Gδ?

Chapter 4:

4.1.1 (*) Let A be a set consisting only of isolated points. Construct a function
whose set of discontinuities is A.

4.2.1 (*) Show that limx→c f(x) = L iff for all ε > 0 there is δ > 0 such that

|x− c| ≤ δ =⇒ |f(x)− L| ≤ ε.

4.2.2 (**) Let f : R→ R. Define the closed set

Dε(x) = {y ∈ R : |x− y| ≤ ε}.

Prove f is continuous at x iff the inverse image of Dε is closed.

4.3.1 (**) If f, g, h are continuous on the real line, prove that f(g(h(x))) is
continuous using the definition of continuity.

4.3.2 (*) Consider
f(x) = xa sin(1/xb).

For what a, b is f(x) continuous (everywhere)?

//////4.3.2 (**) Let C be the cantor set. Define the function f : [0, 1]→ R by

f(x) =

{
1 x ∈ C,
0 x /∈ C.

Prove f is discontinuous at all x ∈ C and is continuous at all x /∈ C.
(Presented by YW.)

//////4.4.1 (*) Assume f is continuous and O is an open set. Is f(O) open? If K is
a closed set, is f(K) closed?(Presented by GA.)

4.4.2 (**) In general, is f(A ∪ B) = f(A) ∪ f(B)? Is f−1(A ∪ B) = f−1(A) ∪
f−1(B)? Here, f−1(A) denotes the inverse image of A. If either of the
above are false, modify them to make them true (add additional hypothe-
ses or change = to ⊆,⊇) .

4.4.3 (**) In general, is f(A ∩ B) = f(A) ∩ f(B)? Is f−1(A ∩ B) = f−1(A) ∩
f−1(B)? Here, f−1(A) denotes the inverse image of A. If either of the
above are false, modify them to make them true (add additional hypothe-
ses or change = to ⊆,⊇).

4.5.1 (**) If A is perfect and f is continuous, is f(A) perfect?
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//////4.5.2 (*) If A is disconnected, and f is continuous, is f(A) disconnected?(To be
presented by SG.)

//////4.5.3 (*) IfA is finite/countable/uncountable, is f(A) finite/countable/uncountable?

4.5.4 (**) If A is Fσ and f is continuous, is f(A) Fσ?

4.5.5 (**) If A is Gδ and f is continuous, is f(A) Gδ?

4.5.6 (***) Let f : [a, b] → R We say f has the Intermediate Value Property if
for all x < y in [a, b] and all L between f(x) and f(y), there is x < c < y
such that f(c) = L. Prove that if f has the IVP and is monotone, then f
must be continuous.

//////4.5.7 (**) Come up with a function different from the book’s example that
satisfies the Intermediate Value Property but is not continuous. Note
that your example cannot be monotone, otherwise the IVP would imply
continuity. (Presented by JH.)

4.6.1 (***) Let F be an Fσ set. Modify the construction of Thomae’s function
to come up with a function whose set of discontinuities is F.

Chapter 5:

//////5.3.1 (**) Prove | cos(x)− cos(y)| ≤ |x− y|. (Presented by AG.)

5.3.2 (**) Assume f : (−1, 1) → R is twice differentiable. Prove that for all x
there is ξ between 0 and x such that

f(x) = f(0) + f ′(0)x+ f ′′(ξ)x2/2.

5.4.1 (***) Prove the nowhere differentiable function we constructed is not dif-
ferentiable at points of the form p/2k.

5.4.2 (***) Does the construction in this section still work for

∞∑
n=0

2−nf(3nx)?

How about
∞∑
n=0

3−nf(2nx)?

Chapter 6:

6.2.1 (**) Let

gn(x) =
nx+ sin(nx)

2n
.

Find the pointwise limit of (gn) on R. Is the convergence uniform on
[−1, 1]? Is the convergence uniform on R?
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6.2.2 (**) Construct a sequence of continuous functions (fn) on [−1, 1] that
converges to a limit function that is not bounded on this set.

6.3.1 (**) Let

fn(x) =
nx2 + 1

2n+ x
.

Find f(x) = lim fn(x), and then take the derivative of f. Next, compute f ′n
and show this sequence converges uniformly on [−10, 10]. Use the theorem
from this chapter to conclude f ′ = lim f ′n.

6.4.1 (***) Let Q = {r1, r2, . . . } be an enumeration of the rational numbers.
For each n ∈ N, define

un(x) =

{
1/2n if x > rn

0 if x ≤ rn.

Now, let h(x) =
∑∞
n=1 un(x). Prove h is monotone, defined on all of R,

and is continuous at every irrational point.

6


