## MTH320 Final exam review questions, Spring 2019

## Chapter 1:

(a) Use induction to prove

$$
\left(A_{1} \cap \cdots \cap A_{n}\right)^{c}=A_{1}^{c} \cup \cdots \cup A_{n}^{c}
$$

Why can't induction be used to prove

$$
\left(\bigcap_{n=1}^{\infty} A_{n}\right)^{c}=\bigcup_{n=1}^{\infty} A_{n}^{c} ?
$$

(b) If $g: \mathbb{R} \rightarrow \mathbb{R}$, prove that $g^{-1}(A \cup B)=g^{-1}(A) \cup g^{-1}(B)$ and $g^{-1}(A \cap B)=$ $g^{-1}(A) \cap g^{-1}(B)$.
(c) Is $\mathbb{Q}$ countable or uncountable? Provide an argument either way.

## Chapter 2:

(a) If $b_{n} \rightarrow b$, prove $\left|b_{n}\right| \rightarrow|b|$. If $\left|b_{n}\right| \rightarrow|b|$, is it true that $b_{n} \rightarrow b$ ?
(b) Use the definition of limit to compute

$$
\lim _{n \rightarrow \infty} \frac{3 n+1}{8 n-4}
$$

(c) If $\sum_{n=1}^{\infty} a_{n}$ converges, and $\sum_{n=1}^{\infty} b_{n}$ converges, does $\sum_{n=1}^{\infty} a_{n} b_{n}$ converge? Provide a proof if it's true, or a counterexample if it's not true.

## Chapter 3:

(a) We say $A \subset \mathbb{R}$ is dense in $B \subset \mathbb{R}$ if $\bar{A} \cap B=B$. Prove that if $A$ is dense in $B$, and $B$ is dense in $\mathbb{R}$, then $A$ is dense in $\mathbb{R}$.
(b) Let

$$
B=\left\{\frac{n(-1)^{n}}{n+1}: n \in \mathbb{N}\right\}
$$

Find the limit points of $B$. Is $B$ closed? Is $B$ open?
(c) Provide an example of a set $A \subset \mathbb{R}$ that is neither open nor closed. Prove that it is neither open nor closed.

## Chapter 4:

(a) Prove or disprove: $\lim _{x \rightarrow c} f(x)=L$, implies $f(c)=L$.
(b) If $f$ is continuous at $c$ but $g$ is not continuous at $c$, prove $f+g$ is not continuous at $c$. If $f$ and $g$ are both discontinuous at $c$, is $f+g$ discontinuous at $c$ ?
(c) Prove that $\sqrt{x}$ is uniformly continuous on $[0, \infty)$.

## Chapter 5:

(a) Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable. Prove that if $f^{\prime}(x)$ is not a constant function, then $f^{\prime}(c)$ is irrational for some $c \in(a, b)$.
(b) State the Mean Value Theorem. Use it to prove that if $f$ is differentiable on $A \subset \mathbb{R}$, and if $f^{\prime}(x)$ is bounded by $M$ for all $x \in A$, then $f(x)$ is uniformly continuous on $A$.
(c) Provide an example of a continuous function on $A$ that is differentiable on $A$, but not twice differentiable on $A$.

## Chapter 6:

(a) If $f_{n}(x)$ converges uniformly to $f(x)$ on $(a, b)$, and if $f_{n}(a) \rightarrow f(a)$, $f_{n}(b) \rightarrow f(b)$, does $f_{n}$ converge uniformly to $f$ on $[a, b]$ ?
(b) Let $f_{n}(x)=1 /\left(x^{2}+n^{2}\right)$. Prove $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on $\mathbb{R}$.
(c) Find the 2nd order Taylor approximation of $\sin (x)$ on $[-1,1]$. What is the bound on the error term $E_{2}(x)$ ? What about $E_{3}(x)$ ?

