1. (5 points each) Define and provide an example. Choose 4 out of 5 of the following:

- (i) Limit point.
- (ii) Isolated point.
- (iii) Open set.
- (iv) Closed set.
- (v) $f : \mathbb{R} \to \mathbb{R}$ continuous at x.

Solutions:

(i) We say x is a limit point of a set $A \subset \mathbb{R}$ if for all r > 0, the ball of radius r around x contains some other point of A. In other words,

$$B_r(x) \setminus \{x\} \cap A \neq \emptyset.$$

Example: 0 is a limit point of (0, 1). Note that .5 and everything in (0, 1) are also limit points of (0, 1).

(ii) A point $x \in A$ is called an isolated point of A if there is some r > 0 such that

$$B_r(x) \cap A = \{x\}.$$

Note the subtlety: something is an isolated point of A only if it is in A, unlike a limit point.

Example: $A = \{4\}$. 4 is an isolated point of A.

- (iii) $A \subset \mathbb{R}$ is open if for all $x \in A$ there is some r > 0 such $B_r(x) \subseteq A$. *Examples*: $(0,1), \emptyset, \mathbb{R}, (0,\infty)$.
- (iv) A is closed if its complement is open. Or, A is closed if it contains all its limit points.
 Examples: [0,1], Ø, ℝ, [0,∞).
- (v) f is continuous at c if

$$\lim_{x \to c} f(x) = f(c).$$

Or, f is continuous at c if for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon.$$

Example: f(x) = x.

2. (5 points each) Prove or disprove:

- (i) If f is continuous on \mathbb{R} , then f((a, b)) is an interval.
- (ii) The Cantor set is open.
- (iii) Every function defined on the integers \mathbb{Z} is continuous.
- (iv) If f is uniformly continuous and g is uniformly continuous, then their product is uniformly continuous.

Solutions:

(i) We had a theorem that said if f is continuous, then

f(conected set) = connected set.

We had another theorem that said the connected sets in \mathbb{R} are just intervals. Since (a, b) is connected, its image under the continuous function f must also be connected, and therefore an interval.

- (ii) The Cantor set $C \subset [0, 1]$ is not open because any ball around 1 contains points bigger than 1. Therefore no ball around 1 is completely contained in C. So C is not open since $1 \in C$ (by the construction, 1 appears at every step C_n , or, recall that any end point at any step C_n is contained in C).
- (iii) This was from the homework. Let $\varepsilon > 0$. Let $\delta = .5$. Then if $x, y \in \mathbb{Z}$,

$$|x-y| < \delta \implies x = y.$$

Therefore

$$|f(x) - f(y)| = 0 < \varepsilon,$$

so f is continuous by definition.

(iv) False. Counterexample: f(x) = x = g(x). See the next question for the proof that x^2 is not uniformly continuous.

Note that f(x) = x is continuous because for all ε , we can let $\delta = \varepsilon$. Then,

$$|x-y| < \delta = \varepsilon \implies |f(x) - f(y)| = |x-y| < \varepsilon.$$

3. (10 points each)

- (a) Prove $f(x) = x^2$ is continuous everywhere using the definition.
- (b) Prove f is not uniformly continuous on \mathbb{R} .
- (c) Is f uniformly continuous on (0, 100)? (Prove or disprove.)

Solutions:

(a) If x = 0, we can choose $\delta = \varepsilon^{1/2}$. Otherwise, let $\delta = \min\{|x|, \varepsilon/(3|x|)\} > 0$. Then,

$$|x^{2} - y^{2}| = |x - y||x + y| < \frac{\varepsilon |x + y|}{3|x|}.$$

By triangle inequality,

$$|x+y| \le |x| + |y|$$

and

$$|y| < |y - x| + |x| < \delta + |x|.$$

Therefore, the above is less than or equal to

$$\varepsilon \frac{|x|+|y|}{3|x|} \leq \varepsilon \frac{|x|+\delta+|x|}{3|x|} \leq \varepsilon.$$

The last inequality follows from $\delta = \min\{|x|, *\} \le |x|$.

(b) Let $x_n = n$ and let $y_n = n + 1/n$. Then $|x_n - y_n| = 1/n \to 0$. However,

$$|f(x_n) - f(y_n)| = |n^2 - (n+1/n)^2| = 2 + 1/n^2 \rightarrow 2 \neq 0.$$

By a theorem from the book, this shows f is not uniformly continuous.

(c) Since f is continuous, it is uniformly continuous on any compact set. In particular, f is uniformly continuous on [0, 100].

Therefore, for all $x, y \in [0, 100]$, for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$|x-y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Restricting our attention to only those $x, y \in (0, 100)$ proves that for all $\varepsilon > 0$, the same δ as above works.

4. (10 points each)

We say $f: A \to \mathbb{R}$ is Lipschitz if there exists $M \ge 0$ such that for all $x, y \in A$,

$$|f(x) - f(y)| \le M|x - y|.$$

- (a) Show that if f is Lipschitz, then f is uniformly continuous.
- (b) Recall that a is a fixed point of f if f(a) = a. Provide an example of a Lipschitz function defined on \mathbb{R} that does not have a fixed point. (Contrast with contraction mappings, where M < 1.)
- (c) Provide an example of a uniformly continuous function that is not Lipschitz. (Hint: enough to show not Lipschitz at a single point y. Think about why a function would fail to be Lipschitz.)

Solutions:

(a) If M = 0, then $|f(x) - f(y)| \le 0$. Therefore, for all ε , you can choose absolutely any $\delta > 0$ so that

$$|x-y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Otherwise, if M > 0, let $\delta = \varepsilon/M$. Then

$$|f(x) - f(y)| \le M|x - y| < M\delta = \varepsilon.$$

- (b) Let f(x) = x + 1. Clearly $f(x) \neq x$ for any x.
- (c) Let $f : [0,1] \to [0,1]$ be defined by $f(x) = \sqrt{x}$. This is an example of a uniformly continuous function that is not Lipschitz:
 - -f is uniformly continuous since it is continuous on a compact set.
 - letting x be arbitrary but y = 0, we show that there can be no such M, satisfying the following, and therefore f cannot be Lipschitz:

$$\sqrt{x} = |\sqrt{x} - \sqrt{0}| = |f(x) - f(y)| \le M|x - y| = M|x| = Mx.$$

There is no fixed number M such that $\sqrt{x}/x = 1/\sqrt{x} \le M$ for all 0 < x < 1.