1. (5 points each) Define and provide an example. Choose 4 out of 5 of the following:
(i) Limit point.
(ii) Isolated point.
(iii) Open set.
(iv) Closed set.
(v) $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous at x.

Solutions:

(i) We say x is a limit point of a set $A \subset \mathbb{R}$ if for all $r>0$, the ball of radius r around x contains some other point of A. In other words,

$$
B_{r}(x) \backslash\{x\} \cap A \neq \varnothing .
$$

Example: 0 is a limit point of $(0,1)$. Note that .5 and everything in $(0,1)$ are also limit points of $(0,1)$.
(ii) A point $x \in A$ is called an isolated point of A if there is some $r>0$ such that

$$
B_{r}(x) \cap A=\{x\} .
$$

Note the subtlety: something is an isolated point of A only if it is in A, unlike a limit point.
Example: $A=\{4\} .4$ is an isolated point of A.
(iii) $A \subset \mathbb{R}$ is open if for all $x \in A$ there is some $r>0$ such $B_{r}(x) \subseteq A$.

Examples: $(0,1), \varnothing, \mathbb{R},(0, \infty)$.
(iv) A is closed if its complement is open. Or, A is closed if it contains all its limit points. Examples: $[0,1], \varnothing, \mathbb{R},[0, \infty)$.
(v) f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Or, f is continuous at c if for all $\varepsilon>0$, there is $\delta>0$ such that

$$
|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon .
$$

Example: $f(x)=x$.

2. (5 points each) Prove or disprove:

(i) If f is continuous on \mathbb{R}, then $f((a, b))$ is an interval.
(ii) The Cantor set is open.
(iii) Every function defined on the integers \mathbb{Z} is continuous.
(iv) If f is uniformly continuous and g is uniformly continuous, then their product is uniformly continuous.

Solutions:

(i) We had a theorem that said if f is continuous, then

$$
f(\text { conected set })=\text { connected set } .
$$

We had another theorem that said the connected sets in \mathbb{R} are just intervals. Since (a, b) is connected, its image under the continuous function f must also be connected, and therefore an interval.
(ii) The Cantor set $C \subset[0,1]$ is not open because any ball around 1 contains points bigger than 1 . Therefore no ball around 1 is completely contained in C. So C is not open since $1 \in C$ (by the construction, 1 appears at every step C_{n}, or, recall that any end point at any step C_{n} is contained in C).
(iii) This was from the homework. Let $\varepsilon>0$. Let $\delta=.5$. Then if $x, y \in \mathbb{Z}$,

$$
|x-y|<\delta \Longrightarrow x=y
$$

Therefore

$$
|f(x)-f(y)|=0<\varepsilon,
$$

so f is continuous by definition.
(iv) False. Counterexample: $f(x)=x=g(x)$. See the next question for the proof that x^{2} is not uniformly continuous.

Note that $f(x)=x$ is continuous because for all ε, we can let $\delta=\varepsilon$. Then,

$$
|x-y|<\delta=\varepsilon \Longrightarrow|f(x)-f(y)|=|x-y|<\varepsilon
$$

3. (10 points each)

(a) Prove $f(x)=x^{2}$ is continuous everywhere using the definition.
(b) Prove f is not uniformly continuous on \mathbb{R}.
(c) Is f uniformly continuous on $(0,100)$? (Prove or disprove.)

Solutions:

(a) If $x=0$, we can choose $\delta=\varepsilon^{1 / 2}$.

Otherwise, let $\delta=\min \{|x|, \varepsilon /(3|x|)\}>0$. Then,

$$
\left|x^{2}-y^{2}\right|=|x-y||x+y|<\frac{\varepsilon|x+y|}{3|x|} .
$$

By triangle inequality,

$$
|x+y| \leq|x|+|y|
$$

and

$$
|y|<|y-x|+|x|<\delta+|x| .
$$

Therefore, the above is less than or equal to

$$
\varepsilon \frac{|x|+|y|}{3|x|} \leq \varepsilon \frac{|x|+\delta+|x|}{3|x|} \leq \varepsilon
$$

The last inequality follows from $\delta=\min \{|x|, *\} \leq|x|$.
(b) Let $x_{n}=n$ and let $y_{n}=n+1 / n$. Then $\left|x_{n}-y_{n}\right|=1 / n \rightarrow 0$. However,

$$
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\left|n^{2}-(n+1 / n)^{2}\right|=2+1 / n^{2} \rightarrow 2 \neq 0
$$

By a theorem from the book, this shows f is not uniformly continuous.
(c) Since f is continuous, it is uniformly continuous on any compact set. In particular, f is uniformly continuous on $[0,100]$.
Therefore, for all $x, y \in[0,100]$, for all $\varepsilon>0$, there is $\delta>0$ such that

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\varepsilon .
$$

Restricting our attention to only those $x, y \in(0,100)$ proves that for all $\varepsilon>0$, the same δ as above works.

4. (10 points each)

We say $f: A \rightarrow \mathbb{R}$ is Lipschitz if there exists $M \geq 0$ such that for all $x, y \in A$,

$$
|f(x)-f(y)| \leq M|x-y| .
$$

(a) Show that if f is Lipschitz, then f is uniformly continuous.
(b) Recall that a is a fixed point of f if $f(a)=a$. Provide an example of a Lipschitz function defined on \mathbb{R} that does not have a fixed point. (Contrast with contraction mappings, where $M<1$.)
(c) Provide an example of a uniformly continuous function that is not Lipschitz. (Hint: enough to show not Lipschitz at a single point y. Think about why a function would fail to be Lipschitz.)

Solutions:

(a) If $M=0$, then $|f(x)-f(y)| \leq 0$. Therefore, for all ε, you can choose absolutely any $\delta>0$ so that

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\varepsilon .
$$

Otherwise, if $M>0$, let $\delta=\varepsilon / M$. Then

$$
|f(x)-f(y)| \leq M|x-y|<M \delta=\varepsilon
$$

(b) Let $f(x)=x+1$. Clearly $f(x) \neq x$ for any x.
(c) Let $f:[0,1] \rightarrow[0,1]$ be defined by $f(x)=\sqrt{x}$. This is an example of a uniformly continuous function that is not Lipschitz:

- f is uniformly continuous since it is continuous on a compact set.
- letting x be arbitrary but $y=0$, we show that there can be no such M, satisfying the following, and therefore f cannot be Lipschitz:

$$
\sqrt{x}=|\sqrt{x}-\sqrt{0}|=|f(x)-f(y)| \leq M|x-y|=M|x|=M x .
$$

There is no fixed number M such that $\sqrt{x} / x=1 / \sqrt{x} \leq M$ for all $0<x<1$.

