
MTH 320 Exam 2 March 29, 2019

1. (5 points each) Define and provide an example. Choose 4 out of 5 of the
following:

(i) Limit point.

(ii) Isolated point.

(iii) Open set.

(iv) Closed set.

(v) f : R→ R continuous at x.

Solutions:

(i) We say x is a limit point of a set A ⊂ R if for all r > 0, the ball of radius r around x
contains some other point of A. In other words,

Br(x) \ {x} ∩ A 6= ∅.

Example: 0 is a limit point of (0, 1). Note that .5 and everything in (0, 1) are also limit
points of (0, 1).

(ii) A point x ∈ A is called an isolated point of A if there is some r > 0 such that

Br(x) ∩ A = {x}.

Note the subtlety: something is an isolated point of A only if it is in A, unlike a limit
point.

Example: A = {4}. 4 is an isolated point of A.

(iii) A ⊂ R is open if for all x ∈ A there is some r > 0 such Br(x) ⊆ A.

Examples : (0, 1),∅,R, (0,∞).

(iv) A is closed if its complement is open. Or, A is closed if it contains all its limit points.

Examples : [0, 1],∅,R, [0,∞).

(v) f is continuous at c if
lim
x→c

f(x) = f(c).

Or, f is continuous at c if for all ε > 0, there is δ > 0 such that

|x− c| < δ =⇒ |f(x)− f(c)| < ε.

Example: f(x) = x.
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2. (5 points each) Prove or disprove:

(i) If f is continuous on R, then f
(
(a, b)

)
is an interval.

(ii) The Cantor set is open.

(iii) Every function defined on the integers Z is continuous.

(iv) If f is uniformly continuous and g is uniformly continuous, then their product is uni-
formly continuous.

Solutions:

(i) We had a theorem that said if f is continuous, then

f(conected set) = connected set.

We had another theorem that said the connected sets in R are just intervals. Since
(a, b) is connected, its image under the continuous function f must also be connected,
and therefore an interval.

(ii) The Cantor set C ⊂ [0, 1] is not open because any ball around 1 contains points bigger
than 1. Therefore no ball around 1 is completely contained in C. So C is not open since
1 ∈ C (by the construction, 1 appears at every step Cn, or, recall that any end point
at any step Cn is contained in C).

(iii) This was from the homework. Let ε > 0. Let δ = .5. Then if x, y ∈ Z,

|x− y| < δ =⇒ x = y.

Therefore
|f(x)− f(y)| = 0 < ε,

so f is continuous by definition.

(iv) False. Counterexample: f(x) = x = g(x). See the next question for the proof that x2

is not uniformly continuous.

Note that f(x) = x is continuous because for all ε, we can let δ = ε. Then,

|x− y| < δ = ε =⇒ |f(x)− f(y)| = |x− y| < ε.
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3. (10 points each)

(a) Prove f(x) = x2 is continuous everywhere using the definition.

(b) Prove f is not uniformly continuous on R.

(c) Is f uniformly continuous on (0, 100)? (Prove or disprove.)

Solutions:

(a) If x = 0, we can choose δ = ε1/2.

Otherwise, let δ = min{|x|, ε/(3|x|)} > 0. Then,

|x2 − y2| = |x− y||x+ y| < ε|x+ y|
3|x|

.

By triangle inequality,
|x+ y| ≤ |x|+ |y|

and
|y| < |y − x|+ |x| < δ + |x|.

Therefore, the above is less than or equal to

ε
|x|+ |y|

3|x|
≤ ε
|x|+ δ + |x|

3|x|
≤ ε.

The last inequality follows from δ = min{|x|, ∗} ≤ |x|.

(b) Let xn = n and let yn = n+ 1/n. Then |xn − yn| = 1/n→ 0. However,

|f(xn)− f(yn)| = |n2 − (n+ 1/n)2| = 2 + 1/n2 → 2 6= 0.

By a theorem from the book, this shows f is not uniformly continuous.

(c) Since f is continuous, it is uniformly continuous on any compact set. In particular, f
is uniformly continuous on [0, 100].

Therefore, for all x, y ∈ [0, 100], for all ε > 0, there is δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

Restricting our attention to only those x, y ∈ (0, 100) proves that for all ε > 0, the
same δ as above works.
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4. (10 points each)
We say f : A→ R is Lipschitz if there exists M ≥ 0 such that for all x, y ∈ A,

|f(x)− f(y)| ≤M |x− y|.

(a) Show that if f is Lipschitz, then f is uniformly continuous.

(b) Recall that a is a fixed point of f if f(a) = a. Provide an example of a Lipschitz
function defined on R that does not have a fixed point. (Contrast with contraction
mappings, where M < 1.)

(c) Provide an example of a uniformly continuous function that is not Lipschitz. (Hint:
enough to show not Lipschitz at a single point y. Think about why a function would
fail to be Lipschitz.)

Solutions:

(a) If M = 0, then |f(x) − f(y)| ≤ 0. Therefore, for all ε, you can choose absolutely any
δ > 0 so that

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

Otherwise, if M > 0, let δ = ε/M. Then

|f(x)− f(y)| ≤M |x− y| < Mδ = ε.

(b) Let f(x) = x+ 1. Clearly f(x) 6= x for any x.

(c) Let f : [0, 1] → [0, 1] be defined by f(x) =
√
x. This is an example of a uniformly

continuous function that is not Lipschitz:

– f is uniformly continuous since it is continuous on a compact set.

– letting x be arbitrary but y = 0, we show that there can be no such M , satisfying
the following, and therefore f cannot be Lipschitz:

√
x = |

√
x−
√

0| = |f(x)− f(y)| ≤M |x− y| = M |x| = Mx.

There is no fixed number M such that
√
x/x = 1/

√
x ≤M for all 0 < x < 1.

Page 4 of 4


