MTH 320: Homework 9

The following are due on Monday, March 18:

§4.2:

1. Use the divergence criterion to show that the following limits don't exist:
(a) $\lim _{x \rightarrow 0}|x| / x$,
(b) $\lim _{x \rightarrow 0} \cos \left(1 / x^{2}\right)$.
2. (a) Construct a rigorous definition for a limit statement of the form $\lim _{x \rightarrow c} f(x) \rightarrow \infty$. Use it to prove that $\lim _{x \rightarrow 0} 1 / x^{2}=\infty$.
(b) Construct a definition for the statement $\lim _{x \rightarrow \infty} f(x)=L$.
(c) Construct a definition for the statement $\lim _{x \rightarrow \infty} f(x)=\infty$ and provide an example of such a function.
3. (Squeeze Theorem): Let f, g, h satisfy $f(x) \leq g(x) \leq h(x)$ for all x in some common domain A. If $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} h(x)=L$, show that also $\lim _{x \rightarrow c} g(x)=L$.
4. Prove a squeeze theorem like above, except replace c with ∞, and use your definition from 2(b).

§4.3:

4. Prove that $g(x)=\sqrt[3]{x}$ is continuous on the real line. (Hint: $a^{3}-b^{3}=$ $\left.(a-b)\left(a^{2}+a b+b^{2}\right).\right)$
5. (a) Prove any function with domain \mathbb{Z} is continuous everywhere (i.e., everywhere in its domain).
(b) Prove that in general, given a function $f: A \rightarrow \mathbb{R}$, if c is an isolated point of A, then f is continuous at c
6. (Contraction mapping Theorem) Let f be defined on all of \mathbb{R}. Assume there is a constant $0<c<1$ such that

$$
|f(x)-f(y)| \leq c|x-y|
$$

for all $x, y, \in \mathbb{R}$.
(a) Show that f is continuous.
(b) Pick any point $y_{1} \in \mathbb{R}$. Consider the sequence

$$
\left(y_{1}, f\left(y_{1}\right), f\left(f\left(y_{1}\right)\right), \ldots\right),
$$

i.e., the sequence is defined by: the first term is y_{1}, and the $n^{\text {th }}$ term y_{n} is defined to be $f\left(y_{n-1}\right)$.
Prove $\left(y_{n}\right)$ is Cauchy. (Therefore it makes sense to consider $y=$ $\lim y_{n}$.)
(c) Prove that y is a fixed point of $f(f(y)=y)$.
(d) Prove y is the unique fixed point of f by showing for any x, the sequence

$$
(x, f(x), f(f(x)), \ldots)
$$

converges to y.
(e) (Not graded; just to think about): Can we solve for y ? Where does the proof fail if $c=1$? Does the proof still fail if we replace our condition with $|f(x)-f(y)|<|x-y|$?
7. Prove Thomae's function is discontinuous at all rational points, and is continuous at all irrational points. Thomae's functions is defined by

$$
f(x)= \begin{cases}1 & \text { if } x=0 \\ 1 / n & \text { if } x=m / n \text { where } n, m \text { don't share a common factor } \\ 0 & \text { if } x \text { is irrational. }\end{cases}
$$

