MTH 320: Homework 4

The following are due on Monday, February 4: §2.4:

- 1. Let (a_n) be a bounded sequence.
 - (a) Prove that the sequence defined by $y_n = \sup\{a_k : k \ge n\}$ converges. (First try some examples with sequences you know, so you get a feel for what's going on.)
 - (b) The *limit superior* of (a_n) , or $\limsup a_n$ is defined by

$$\limsup a_n = \lim y_n,$$

where y_n was defined in (a). Provide a reasonable definition of $\liminf a_n$ and briefly explain why it always exists for any bounded sequence.

- (c) Prove that $\liminf a_n \leq \limsup a_n$ and find an example of a sequence for which the equality is strict.
- (d) Show that $\liminf a_n = \limsup a_n$ if and only if $\lim a_n$ exists. Show that in this case, all three are the same value.

§2.5:

- 2. If (a_n) and (b_n) are Cauchy, prove that (c_n) is Cauchy, where c_n is defined by $c_n = |a_n b_n|$.
- 3. Prove that (a_n) converges to $a \in \mathbb{R}$ iff all subsequences (a_{n_k}) of (a_n) converge to a. Do the same for $a = \infty$.
- 4. A different proof of Bolzano-Weierstrass: let (a_n) be a bounded sequence. Define the set

 $S = \{ x \in \mathbb{R} : x > a_n \text{ for infinitely many } n \}.$

Show that there exists a subsequences (a_{n_k}) converging to $s = \inf S$.

§2.6

- 5. Give an example of each of the following, or prove that no example exists.
 - (a) A Cauchy sequence that is not monotone.
 - (b) A monotone sequence that is not Cauchy.
 - (c) A Cauchy sequence with a divergent subsequence.
 - (d) An unbounded sequence containing a subsequence that is Cauchy.
- 5. Let (a_n) be a sequence with the property that: for all $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $n \ge N$ implies $|a_{n+1} a_n| < \varepsilon$. Either prove that (a_n) is Cauchy or else find a counterexample.

- 6. Find an example of a_n, b_n such that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both diverge, but $\sum_{n=1}^{\infty} a_n b_n$ converges.
- 7. (a) Find an example of a convergent series $\sum_{n=1}^{\infty} a_n$ and a bounded sequence (b_n) such that $\sum_{n=1}^{\infty} a_n b_n$ diverges.
 - (b) Show that if in addition in part (a) we assume that $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n b_n$ must converge.

§2.7