## MTH 320: Homework 3

Notation: $\lim a_{n}=a$ is the same as $\lim _{n \rightarrow \infty} a_{n}=a$ is the same as $\left(a_{n}\right) \rightarrow a$ is the same as $a_{n} \rightarrow a$.

The following are due on Monday, January 28: §2.2:

0 . Use the definition of limit to prove the constant sequence $(c, c, \ldots)$ converges to $c$.

1. Use the definition of limit to prove $\lim _{n \rightarrow \infty} \frac{1}{6 n^{2}+1}=0$.
2. Use the definition of limit to prove $\lim _{n \rightarrow \infty} \frac{2 n+3}{5 n+7}=\frac{2}{5}$.
3. Prove $(1,0,0,1,0,0,1,0,0, \ldots)$ does not have a limit.
4. (Practice with quantifiers.)

We say (just for this exercise) a sequence $\left(a_{n}\right)$ is eventually in a set $A \subset \mathbb{R}$ if there exists an $N \in \mathbb{N}$ such that $a_{n} \in A$ for all $n \geq N$.
We also say a sequence $\left(a_{n}\right)$ is frequently in a set $A \subset \mathbb{R}$ if for all $N \in \mathbb{N}$ there is $n \geq N$ such that $a_{n} \in A$.
(a) Is the sequence $\left\{(-1)^{n}\right\}$ eventually or frequently in $\{1\}$ ?
(b) Does frequently imply eventually or does eventually imply frequently? (Which condition is stronger, i.e., more restrictive.)
(c) Suppose an infinite number of terms in $\left(x_{n}\right)$ are equal to 4 . Is $\left(x_{n}\right)$ eventually in $(3.9,4.1)$ ? Is it frequently in $(3.9,4.1)$ ?

## §2.3:

5. (a) Assume $\lim a_{n}=a$ and $\lim b_{n}=b$. Prove that $\lim a_{n} b_{n}=a b$.
(b) Find sequences $\left(a_{n}\right),\left(b_{n}\right)$ that do not converge, but such that $\left(a_{n} b_{n}\right)$ converges.
6. Assume that $\left(1 / b_{n}\right)$ converges. Can you formulate a theorem similar to Theorem 2.3.2? That is, if $1 / b_{n}$ converges, then $b_{n}$ $\qquad$ . Prove your theorem.
7. Prove the Squeeze Theorem for limits: if $y_{n} \leq x_{n} \leq z_{n}$, and if $\lim y_{n}=$ $L=\lim z_{n}$, then $\lim x_{n}=L$.
8. Prove that sequences have a unique limit. That is, if $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$, then $x=y$. (You will need a theorem from chapter 1.)
9. If $b_{n} \rightarrow b$, prove that $\left|b_{n}\right| \rightarrow|b|$.

## §2.4:

10. Show that $\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \ldots$ converges and find its limit.
11. (a) Prove that the sequence defined by $x_{1}=3$ and $x_{n+1}=\frac{1}{4-x_{n}}$ for $n>1$ converges.
(b) Explain why $\lim x_{n}$ exists implies $\lim x_{n+1}$ exists. (Maybe by using definition of limit.)
(c) Take the limit of both sides of the equation in part (a) to explicitly compute $\lim x_{n}$. Explain why you are allowed to "move" the limits wherever you do.
12. Let $x_{1}=2$ and define $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)$ for $n>1$.
(a) Show that $x_{n}^{2}$ is always greater than 2 , and use this to prove $x_{n}-$ $x_{n+1} \geq 0$. Conclude $\lim x_{n}=\sqrt{2}$.
(b) Modify the sequence $\left(x_{n}\right)$ so that it converges to $\sqrt{c}$ for any $c>0$.

The above exercise is a good way to approximate square roots with a computer, and it was known by the Babylonians in 1500 BC , and by the Greeks in the early 1st century.

