MTH 320: Homework 11

The following are due on Monday, April 15: §5.2:

- 1. (Quotient Rule)
 - (a) Find a formula for the derivative of f(x) = 1/x (wherever it's differentiable) using the definition of derivative.
 - (b) Use the product rule and the chain rule, together with (a), to find the derivative of (f/g).
- 2. Let

$$f_a(x) = \begin{cases} x^a & \text{whenever } x \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

- (a) For which a is f continuous at zero?
- (b) For which a is f differentiable at zero?
- (c) For which a is f twice differentiable at zero?
- 3. Let $f: (a,b) \to \mathbb{R}$ be differentiable. Prove that if f'(x) is not a constant function, then f'(c) is irrational for some $c \in (a,b)$.

§5.3:

4. Recall from a previous homework that f is contractive on a set A if there exists 0 < c < 1 such that

$$|f(x) - f(y)| \le c|x - y|$$

for all $x, y \in A$. Show that if f is differentiable, and if f' is continuous and satisfies |f'(x)| < 1 on [a, b], then f is contractive on [a, b].

- 5. Recall that a fixed point of $f : A \to \mathbb{R}$ is a point $x \in A$ such that f(x) = x. Show that if f is differentiable on an interval with $f'(x) \neq 1$, then f has at most one fixed point in that interval.
- 6. Let h be differentiable on [0,3], and assume h(0) = 1, h(1) = 2, h(3) = 2.
 - (a) Argue that h(x) has a fixed point in [0,3].
 - (b) Prove there is $c \in [0, 3]$ such that h'(c) = 1/3.
 - (c) Prove there is $c \in [0, 3]$ such that h'(c) = 1/4.
- 7. For part (b) below, $g: \mathbb{R} \to \mathbb{R}$ is defined by

$$g(x) = \begin{cases} x/2 + x^2 \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

- (a) Assume f is differentiable on (a, b). Prove f is increasing on (a, b) iff $f'(x) \ge 0$ for all $x \in (a, b)$.¹
- (b) Prove that g(x) is differentiable everywhere and satisfies g'(0) > 0. Despite this fact, prove that g is *not* increasing on any interval containing 0.
- 8. (Compare to 7.) Assume $g:(a,b) \to \mathbb{R}$ is differentiable at c. If $g'(c) \neq 0$, show that there is an r > 0 such that the ball of radius r around c, $B_r(c) \subseteq (a,b)$, for which $g(x) \neq g(c)$ for all $x \in B_r(c) \setminus \{c\}$.

¹Recall: $f : (a, b) \to \mathbb{R}$ is increasing on (a, b) if $f(x) \le f(y)$ for all a < x < y < b.