MTH 320: Homework 11

The following are due on Monday, April 15:

§5.2:

1. (Quotient Rule)
(a) Find a formula for the derivative of $f(x)=1 / x$ (wherever it's differentiable) using the definition of derivative.
(b) Use the product rule and the chain rule, together with (a), to find the derivative of (f / g).
2. Let

$$
f_{a}(x)= \begin{cases}x^{a} & \text { whenever } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) For which a is f continuous at zero?
(b) For which a is f differentiable at zero?
(c) For which a is f twice differentiable at zero?
3. Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable. Prove that if $f^{\prime}(x)$ is not a constant function, then $f^{\prime}(c)$ is irrational for some $c \in(a, b)$.

§5.3:

4. Recall from a previous homework that f is contractive on a set A if there exists $0<c<1$ such that

$$
|f(x)-f(y)| \leq c|x-y|
$$

for all $x, y \in A$. Show that if f is differentiable, and if f^{\prime} is continuous and satisfies $\left|f^{\prime}(x)\right|<1$ on $[a, b]$, then f is contractive on $[a, b]$.
5. Recall that a fixed point of $f: A \rightarrow \mathbb{R}$ is a point $x \in A$ such that $f(x)=x$. Show that if f is differentiable on an interval with $f^{\prime}(x) \neq 1$, then f has at most one fixed point in that interval.
6. Let h be differentiable on $[0,3]$, and assume $h(0)=1, h(1)=2, h(3)=2$.
(a) Argue that $h(x)$ has a fixed point in $[0,3]$.
(b) Prove there is $c \in[0,3]$ such that $h^{\prime}(c)=1 / 3$.
(c) Prove there is $c \in[0,3]$ such that $h^{\prime}(c)=1 / 4$.
7. For part (b) below, $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
g(x)= \begin{cases}x / 2+x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) Assume f is differentiable on (a, b). Prove f is increasing on (a, b) iff $f^{\prime}(x) \geq 0$ for all $x \in(a, b) .{ }^{1}$
(b) Prove that $g(x)$ is differentiable everywhere and satisfies $g^{\prime}(0)>0$. Despite this fact, prove that g is not increasing on any interval containing 0 .
8. (Compare to 7.) Assume $g:(a, b) \rightarrow \mathbb{R}$ is differentiable at c. If $g^{\prime}(c) \neq 0$, show that there is an $r>0$ such that the ball of radius r around c, $B_{r}(c) \subseteq(a, b)$, for which $g(x) \neq g(c)$ for all $x \in B_{r}(c) \backslash\{c\}$.

[^0]
[^0]: ${ }^{1}$ Recall: $f:(a, b) \rightarrow \mathbb{R}$ is increasing on (a, b) if $f(x) \leq f(y)$ for all $a<x<y<b$.

