MTH 320: Homework 10

The following are due on Friday, March 29: §4.4:

- 1. Show $1/x^2$ is uniformly continuous on $[1, \infty)$ but not on (0, 1).
- 2. Show that x^3 is continuous on all of \mathbb{R} , but not uniformly continuous on all of \mathbb{R} .
- 3. Even though we know its derivative blows up at zero, prove that $x^{1/3}$ is uniformly continuous on all of \mathbb{R} by showing it's uniformly continuous on $[-1, 1], (-\infty, -1], \text{ and } [1, \infty).$

(How does this argument show it's uniformly continuous on all of \mathbb{R} ?)

4. Let g be defined on all of \mathbb{R} . If A is a subset of \mathbb{R} , the inverse image of A (with respect to g) is defined to be

$$g^{-1}(A) = \{x \in \mathbb{R} : g(x) \in A\}.$$

Prove g is continuous if and only if $g^{-1}(O)$ is open whenever $O \subset \mathbb{R}$ is open.

5. Let (x_n) be a Cauchy sequence. Prove that if f is uniformly continuous on \mathbb{R} , then $(f(x_n))$ is also Cauchy.

Then, find a counterexample if f is only continuous.

§4.5:

- 6. True or false (requires explanation):
 - (a) Continuous functions take bounded open intervals to bounded open intervals.
 - (b) Continuous functions take open intervals to open intervals.
 - (c) Continuous functions take bounded closed intervals to bounded closed intervals.
- 7. Is there a continuous function $f : \mathbb{R} \to \mathbb{R}$ with range \mathbb{Q} ?
- 8. Assume f is increasing, that is, assume x < y implies $f(x) \le f(y)$. If f satisfies the Intermediate Value Property, prove f is continuous.
- 9. Let f be continuous on [0,1] and assume its range is [0,1]. Prove that f has a fixed point, that is, there is some x such that f(x) = x. (Hint: consider g(x) = f(x) x. Either g(0) = 0, g(1) = 1, or else apply an important result from this section.)

§4.6:

Definition: We say f is α -continuous at x if there is $\delta > 0$ such that

 $y, z \in (x - \delta, x + \delta) \implies |f(x) - f(y)| < \alpha.$

Definition: Given a function $f : \mathbb{R} \to \mathbb{R}$, let

 $D_{\alpha} = \{ x \in \mathbb{R} : f \text{ is not } \alpha - \text{continuous at } x \}.$

Also, define

$$D_f = \{x \in \mathbb{R} : f \text{ is not continuous at } x\}.$$

The following exercises provide a proof that the set of continuities of f must be an F_{σ} set (the countable union of closed sets).

- 10. Prove $\alpha < \beta$ implies $D_{\beta} \subseteq D_{\alpha}$.
- 11. Prove if f is continuous at x, then it is α -continuous at x for all α . Explain how this proves $D_{\alpha} \subset D_f$ for all α .
- 12. Prove $D_{1/n}$ is closed.
- 13. Prove if f is not continuous at x, then f is not α -continuous at x for some α . Explain why this implies

$$D_f = \bigcup_{n=1}^{\infty} D_{1/n}.$$

This completes the proof that the set of discontinuities of $f:\mathbb{R}\to\mathbb{R}$ is an F_σ set.¹

¹Conversely, given any F_{σ} set, one can construct a function that is discontinuous on that set. The construction is a more general version of the one for Thomae's function.