1. (20 points)
(i) Compute the volume of a ball of radius R using Cavalieri's principle. (Hint: consider $x^{2}+y^{2}+a^{2}=1$ as a varies between $-1 \leq a \leq 1$.)
(ii) Does Cavalieri's principle hold for surface areas? (Hint: the surface area of a sphere of radius R is $4 \pi R^{2}$. You could attempt to apply this method to cross-sections of this sphere.)

Solutions:

(i) If $x^{2}+y^{2}+z^{2} \leq R^{2}$, we can take cross sections at $z=$ constant. The intersection is the disk $x^{2}+y^{2} \leq R^{2}-z^{2}$. This disk has radius $\sqrt{R^{2}-z^{2}}$. The area of the disk is $\pi{\sqrt{R^{2}-z^{2}}}^{2}=\pi\left(R^{2}-z^{2}\right)$. Cavalieri's principle says that the volume of the ball is equal to the integral of these cross sections, so it's equal to

$$
\int_{-R}^{R} \pi\left(R^{2}-z^{2}\right) d z=\left.\pi\left(R^{2} z-z^{3} / 3\right)\right|_{-R} ^{R}=\pi\left[\left(R^{3}-R^{3} / 3\right)-\left(-R+R^{3} / 3\right)\right]=\frac{4 \pi R^{3}}{3}
$$

(ii) If Cavalieri's principle worked for surface areas, then we better have that surface area is the integral of the cross sectional perimeters. But the integral of cross sections is

$$
\int_{-R}^{R} 2 \pi \sqrt{R^{2}-z^{2}} d z=2 \pi \int_{-R}^{R} \sqrt{R^{2}-z^{2}} d z
$$

The integral just represents the area of the upper half disk of radius R, which has area $\pi R^{2} / 2$. Multiplying by 2π, the integral of cross sectional perimeters is $\pi^{2} R^{2}$. This is not equal to $4 \pi R^{2}$. (But it would be equal if the proof of $\pi=4$ we did in class was true.)
2. (20 points) Compute the following integrals.
(i) $\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y$
(ii) $\int_{0}^{1} \int_{\sqrt[4]{x}}^{1} \int_{0}^{3} z^{2} \cos \left(\frac{\pi x}{2 y^{4}}\right) d z d y d x$

Solutions: Use Fubini's Theorem. Draw the region.
(i)

$$
\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y=\int_{0}^{1} \int_{0}^{x} e^{-x^{2}} d y d x=\int_{0}^{1} x e^{-x^{2}} d x=-\left.\frac{e^{-x^{2}}}{2}\right|_{0} ^{1}=-\frac{1}{2 e}+\frac{1}{2}
$$

(ii)

$$
\begin{aligned}
& \int_{0}^{1} \int_{\sqrt[4]{x}}^{1} \int_{0}^{3} z^{2} \cos \left(\frac{\pi x}{2 y^{4}}\right) d z d y d x \\
= & \left.\int_{0}^{1} \int_{\sqrt[4]{x}}^{1} \frac{z^{3}}{3}\right|_{0} ^{3} \cos \left(\frac{\pi x}{2 y^{4}}\right) d y d x \\
= & \int_{0}^{1} \int_{\sqrt[4]{x}}^{1} 9 \cos \left(\frac{\pi x}{2 y^{4}}\right) d y d x \\
= & 9 \int_{0}^{1} \int_{0}^{y^{4}} 9 \cos \left(\frac{\pi x}{2 y^{4}}\right) d x d y \\
= & \left.9 \int_{0}^{1} \sin \left(\frac{\pi x}{2 y^{4}}\right)\left(\frac{2 y^{4}}{\pi}\right)\right|_{0} ^{y^{4}} d x \\
= & \frac{18}{\pi} \int_{0}^{1}\left(\sin \left(\frac{\pi}{2}\right)\left(\frac{2 y^{4}}{\pi}\right)-0\right) d y \\
= & \frac{18}{\pi} \int_{0}^{1} y^{4} d y=\frac{18}{5 \pi} .
\end{aligned}
$$

3. (10 points) Bound the following integral above and below: $\int_{0}^{10} \int_{0}^{10} \int_{0}^{10} \sin \left(x y^{2} z^{3}\right) d x d y d z$.

Are you happy with this bound? Why?

Solution:

We know that $-1 \leq \sin \left(x y^{2} z^{3}\right) \leq 1$. By monotonicity of integrals,

$$
-10^{3}=\int_{0}^{10} \int_{0}^{10} \int_{0}^{10}-1 d x d y d z \leq \int_{0}^{10} \int_{0}^{10} \int_{0}^{10} \sin \left(x y^{2} z^{3}\right) d x d y d z \leq \int_{0}^{10} \int_{0}^{10} \int_{0}^{10} 1 d x d y d z=10^{3}
$$

So

$$
-1000 \leq \int_{0}^{10} \int_{0}^{10} \int_{0}^{10} \sin \left(x y^{2} z^{3}\right) d x d y d z \leq 1000
$$

This is not a good bound because sin oscillates a lot in the given region. We expect a lot of cancellation.

