1. Let $\mathbf{u}=(1,2,3)$ and $\mathbf{v}=(3,-2,1)$.
(a) Find $\mathbf{u} \cdot \mathbf{v}$.
(b) Find the angle between \mathbf{u} and \mathbf{v}.
(c) Find $\mathbf{u} \times \mathbf{v}$.
(d) What are $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})$ and $\mathbf{v} \cdot(\mathbf{u} \times \mathbf{v})$? Would the expressions still make sense without parentheses? Why or why not?

Solution:

(a)

$$
1 \cdot 3+2 \cdot(-2)+3 \cdot 1=2
$$

(b)

$$
2=\|\mathbf{u}\|\|\mathbf{v}\| \cos (\theta)=\sqrt{1+4+9} \sqrt{9+4+1} \cos (\theta)=14 \cos (\theta)
$$

So $\cos (\theta)=1 / 7$, which is the same as $\theta=\arccos (1 / 7)$.
(c)

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
3 & -2 & 1
\end{array}\right|=(2-(-6), 9-1,-2-6)=(8,8,-8)
$$

(d) Since $\mathbf{u} \times \mathbf{v}$ is always orthogonal to both \mathbf{u} and \mathbf{v}, both quantities are the scalar zero. These expressions would make sense without parentheses because $\mathbf{u} \cdot \mathbf{v} \times \mathbf{w}$ can only be read one way: we must do the cross product first. If you did the dot product first, it would give a scalar, and then you would have the cross product of a scalar with a vector, which we cannot do: $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$ doesn't make sense.
You can "double check" that both are zero by doing the computation.

Two matrices can be added by adding their components separately. For example,

$$
\left[\begin{array}{cc}
2 & 4 \\
8 & 16
\end{array}\right]+\left[\begin{array}{cc}
2 & 1 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 5 \\
12 & 17
\end{array}\right]
$$

For the following question, consider 2×2 matrices.
2. Denote the determinant of a matrix A by $\operatorname{det}(A)$.
(a) Is $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$? Prove it if it's true, or find a counterexample (one case where it's wrong) if it's false. What about $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$?
(b) Define a dot product for matrices, and a norm (magnitude) for matrices. How can we think of a matrix as a vector? Can you define an angle between the two matrices? Do you think CauchySchwarz and Triangle Inequality would still hold for this dot product and norm?

Solution:

(a) I didn't really expect you to come up with good proofs/examples on the spot, it was just something to think about.
The first question is false because the determinant of both

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

both have determinant equal to 1 . However,

$$
\operatorname{det}(A+B)=0 \neq 1+1=\operatorname{det}(A)+\operatorname{det}(B)
$$

With multiplication it's true, but we won't prove it.
(b) We can think of an $m \times n$ matrix as a vector in $\mathbb{R}^{m \times n}$, and in particular a 2×2 matrix as a vector in \mathbb{R}^{4} by

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=(a, b, c, d) .
$$

Now we can define the dot product of two matrices and norm of a matrix how we did for vectors. We can even define cross product of two matrices that have a zero component in the same place by thinking of a vector $(a, b, c, 0)$, for example, as the vector (a, b, c) in \mathbb{R}^{3}. In $\S 1.5$ we'll see that all the properties of dot product and norm still hold in any \mathbb{R}^{n}, and so will all the inequalities we proved.

