1. (20 points)

(a) Define f in \mathbb{R}^{2} by $f(x, y)=x^{1 / 3} y^{1 / 3}$. Find $\frac{\partial f}{\partial x}(0,0)$.

If you try taking the derivative using Calc 1 , you will get $0 / 0$, which is undefined. So we have to do another method: the definition of derivative.

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0^{1 / 3} h^{1 / 3}-0^{1 / 3} 0^{1 / 3}}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0 .
$$

We did this in class - this was one example why partial derivatives don't exactly reflect differentiability the way we want.
(b) Define f in \mathbb{R}^{2} by $f(x, y)=y \cos \left(\left|\sin \left(x^{5}\right)\right|^{2}\right)$. Compute $f_{x y x y x}$. Justify each step.

We had a theorem that said $f_{x y}=f_{y x}$ as long as f is twice continuously differentiable (C^{2}). Similarly, if f is C^{5}, then $f_{x y x y x}=f_{y y x x x}$ (actually we only need C^{4} since we only switch the first four derivatives). All that's left is to check f is indeed C^{5}.
There might be a problem because absolute value is not differentiable. So we can't just use the argument that the composition and multiplication of C^{5} functions is C^{5}.
Luckily, |whatever $\left.\right|^{2}=$ whatever 2. So $f(x, y)=y \cos \left(\sin \left(x^{5}\right)^{2}\right)=y \cos \left(\sin ^{2}\left(x^{5}\right)\right)$. Now you can say that this is a composition of C^{5} functions multiplied by a C^{5} function, and use the theorem.
2. (30 points) Define f and g from \mathbb{R}^{2} to \mathbb{R}^{2} by $g(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$. Let $f(u, v)=\left(e^{u} \cos (v), e^{u} \sin (v)\right)$. Let $h(x, y)=(f \circ g)(x, y)$. Find $\operatorname{Dh}(1,1)$.

By the Chain Rule, $D h(1,1)=D f(g(1,1)) D g(1,1)$.
Since $g(1,1)=\left(1^{2}-1^{2}, 2(1)(1)\right)=(0,2)$, we need to find $D f(0,2)$ and $D g(1,1)$.

$$
D f=\left[\begin{array}{cc}
\frac{\partial}{\partial u} e^{u} \cos (v) & \frac{\partial}{\partial v} e^{u} \cos (v) \\
\frac{\partial}{\partial u} e^{u} \sin (v) & \frac{\partial}{\partial v} e^{u} \sin (v)
\end{array}\right]=\left[\begin{array}{cc}
e^{u} \cos (v) & -e^{u} \sin (v) \\
e^{u} \sin (v) & e^{u} \cos (v)
\end{array}\right]
$$

which at $(0,2)$ equals

$$
\left[\begin{array}{cc}
\cos (2) & -\sin (2) \\
\sin (2) & \cos (2)
\end{array}\right] .
$$

Next,

$$
D g=\left[\begin{array}{cc}
2 x & -2 y \\
2 y & 2 x
\end{array}\right]
$$

which at $(1,1)$ equals

$$
\left[\begin{array}{cc}
2 & -2 \\
2 & 2
\end{array}\right]
$$

Multiplying the two matrices $D f$ with $D g$ yields

$$
\left[\begin{array}{cc}
\cos (2) & -\sin (2) \\
\sin (2) & \cos (2)
\end{array}\right]\left[\begin{array}{cc}
2 & -2 \\
2 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 \cos (2)-2 \sin (2) & -2 \cos (2)-2 \sin (2) \\
2 \sin (2)+2 \cos (2) & -2 \sin (2)+2 \cos (2)
\end{array}\right] .
$$

You can think of $h_{x}(1,1)$ as the left column of this matrix, and $h_{y}(1,1)$ as the right column.
3. (30 points) Define f in \mathbb{R}^{2} by $f(x, y)=2 x^{3}+6 x y^{2}-3 x^{2}+3 y^{2}$.
(a) Find the critical points of f.

We have to solve for

$$
\nabla f=\left(6 x^{2}+6 y^{2}-6 x, 12 x y+6 y\right)=(0,0)
$$

Therefore $0=12 x y+6 y=6 y(2 x+1)$. So either $y=0$ or $x=-1 / 2$.
If $y=0$, then $6 x^{2}+6 y^{2}-6 x=6 x^{2}-6 x=6 x(x-1)=0$ when $x=0$ or $x=1$.
If $x=-1 / 2$, then $6 x^{2}+6 y^{2}-6 x=1.5+6 y^{2}+3=0$ has no solutions. So the only critical points are $(0,0)$ and $(1,0)$.
(b) Find and classify the extrema (out of the choices: local min/local max/ saddle).
$f_{x x}=12 x-6, f_{y y}=12 y+6, f_{x y}=12 y$. Since we are looking only where $y=0$, let's plug that in first to make it easier. So actually

$$
f_{x x}(x, 0)=12 x-6, f_{y y}(x, 0)=6, f_{x y}(x, 0)=0
$$

Therefore the Hessian determinant is equal to $|H|=72 x-36$. At $x=0$, it's negative, therefore $(0,0)$ is a saddle point. At $x=1$, it's positive. Since $f_{y y}>0$, we know that $(1,0)$ is a local minimum.
(c) Find the absolute maximum and minimum on the right half disk: the region D bounded to the right by $x^{2}+y^{2}=1$ and to the left by $x=0$.

Since we have a few y^{2} in our function, I think the best parametrizations to take are
(i) $x=0,-1 \leq y \leq 1$;
(ii) $y=\sqrt{1-x^{2}}, 0 \leq x \leq 1$;
(iii) $y=-\sqrt{1-x^{2}}, 0 \leq x \leq 1$.

We already saw the gradient is never zero in the interior of D, so we just have to check the three functions above.
(i) $f(0, y)=3 y^{2}$, which has one critical point at $y=0$. The values to keep track of here are $f(0,0)=\mathbf{0}, f(0,1)=\mathbf{3}$, and $f(0,-1)=\mathbf{3}$.
(ii) Checking the endpoints, $f(0,0)=\mathbf{0}$ and $f(1,0)=2-3=\mathbf{- 1}$. For the rest, see below.
(iii) Checking the endpoints, $f(0,0)=\mathbf{0}$ and $f(1,0)=2-3=\mathbf{- 1}$, as above. For the interior $(0,1),{ }^{1}$

$$
f\left(x, \pm \sqrt{1-x^{2}}\right)=2 x^{3}+6 x\left(1-x^{2}\right)-3 x^{2}+3\left(1-x^{2}\right)=-4 x^{3}-6 x^{2}+6 x+3
$$

Call the above $g(x)$. Then $g^{\prime}(x)=-12 x^{2}-12 x+6=0$ when $x^{2}+x-1 / 2=0$. Using the quadratic formula, we get

$$
x=\frac{-1 \pm \sqrt{3}}{2}
$$

[^0]but only $x=\frac{-1+\sqrt{3}}{2}$ might lie in our interval (and does since $0<-1+\sqrt{3}<-1+2=1$).
Since $x^{2}+x-1 / 2=0$,
$$
x^{2}=1 / 2-x=\frac{2-\sqrt{3}}{2} .
$$

Also,

$$
x^{3}=x \cdot x^{2}==\frac{-1+\sqrt{3}}{2} \frac{2-\sqrt{3}}{2}=\frac{-5+3 \sqrt{3}}{4} .
$$

Finally,

$$
\begin{aligned}
& g(x)=-4\left(\frac{-5+3 \sqrt{3}}{4}\right)-6\left(\frac{2-\sqrt{3}}{2}\right)+6\left(\frac{-1+\sqrt{3}}{2}\right)+3 \\
& =(5-3 \sqrt{3})+(-6+3 \sqrt{3})+(-3+3 \sqrt{3})+3=-1+3 \sqrt{3} .
\end{aligned}
$$

Now $27>16$, so taking the square root of both sides, we see that $3 \sqrt{3}>4$ and therefore $-1+3 \sqrt{3}>3$.

So $-1+3 \sqrt{3}$ is the maximum on D and -1 is the minimum.
4. (20 points) Find the second order Taylor Polynomial of $f(x, y)=e^{2 x y}+x^{2}-2 y^{3}$ at (0,0) using any correct method.

Most of you got this right, so let me use a different method. Let P be the function taking any C^{2} function f to its Taylor Polynomial of order 2:

$$
P(f)=\text { Taylor Polynomial of } f \text { of order } 2
$$

Fact: P is linear. In particular, $P(f+g)=P(f)+P(g)$. Therefore,

$$
P\left(e^{2 x y}+x^{2}-2 y^{3}\right)=P\left(e^{2 x y}\right)+P\left(x^{2}\right)+P\left(-2 y^{3}\right)
$$

The second order expansion of any second degree polynomial is itself, and the second order expansion of a polynomial with no second degree or lower terms is zero: ${ }^{2}$

$$
P\left(x^{2}\right)=x^{2}, \text { and } P\left(-2 y^{3}\right)=0
$$

Finally, we can use Calc 2 methods to write

$$
P\left(e^{2 x y}\right)=1+(2 x y)+\frac{(2 x y)^{2}}{2!}+\ldots
$$

Actually this stops at $2 x y$ since all higher order terms are higher than second degree ($x^{2} y^{2}$ is fourth degree, and so on). Therefore $P\left(e^{2 x y}\right)=1+2 x y$. Finally,

$$
P\left(e^{2 x y}+x^{2}-2 y^{3}\right)=P\left(e^{2 x y}\right)+P\left(x^{2}\right)+P\left(-2 y^{3}\right)=1+2 x y+x^{2}
$$

This method doesn't always work. For example, if we had $e^{2 \sin (x y)}$ instead of $e^{2 x y}$, we wouldn't be able to apply Calc 2 methods as easily.

[^1]
[^0]: ${ }^{1}$ Skip this part unless you really like inequalities, and want to learn how to deal with square roots. I didn't mean it to be so messy, I made a typo. Sorry about that.

[^1]: ${ }^{2}$ What does this say about the best possible plane/ paraboloid/etc that approximates third degree polynomials?

