MTH 254H Midterm 1 October 1st, 2018

1. (20 points)

()

Define f in R? by f(z,y) = 2'/3y'/3. Find %(0,0).

If you try taking the derivative using Calc 1, you will get 0/0, which is undefined. So we have to do
another method: the definition of derivative.
of f(0+ h,0) = /(0,0) 01/3h1/3 — g1/301/3 0

20 = h B A R L T

We did this in class — this was one example why partial derivatives don’t exactly reflect differentiability
the way we want.

Define f in R? by f(z,y) = ycos(|sin(z”)[?). Compute fryzy.. Justify each step.

We had a theorem that said f,, = f,. as long as f is twice continuously differentiable (C?). Similarly,

if fis C®, then frypyr = fyyees (actually we only need C* since we only switch the first four derivatives).
All that’s left is to check f is indeed C°.

There might be a problem because absolute value is not differentiable. So we can’t just use the
argument that the composition and multiplication of C® functions is C°.

Luckily, |whatever|? = whatever®. So f(z,%) = y cos(sin(2°)?) = y cos(sin?(2°)). Now you can say that

this is a composition of C® functions multiplied by a C® function, and use the theorem.
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2. (30 points) Define f and g from R? to R? by g(z,y) = (x*>—y?, 2zy). Let f(u,v) = (e* cos(v), e*sin(v))

Let h(z,y) = (f o g)(x,y). Find Dh(1,1).

By the Chain Rule, Dh(1,1) = Df(g(1,1))Dg(1,1).
Since g(1,1) = (12 — 12,2(1)(1)) = (0,2), we need to find Df(0,2) and Dg(1,1)

Df - {%e cos(v) Ze" cos(v)}

e* cos(v) —e"sin(v)
soetsin(v)  S-e*sin(v) v

e'sin(v)  e*cos( ’

which at (0,2) equals

sin(2)  cos(2)

20 —2y
2y 2z |’

[008(2) - sin(Q)] |

Next,

Dg
which at (1, 1) equals

Multiplying the two matrices D f with Dg yields
[2 cos(2) — 2sin(2) —2cos(2) — 2sin(2)

[Z?ﬁ((g)) _cié?g)] E _22] 2sin(2) + 2cos(2) —2sin(2) + 2cos(2)| "

You can think of h,(1,1) as the left column of this matrix, and h,(1,1) as the right column.
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3. (30 points) Define f in R? by f(xz,y) = 223 + 6xy* — 322 + 3y>.

(a) Find the critical points of f.
We have to solve for
Vf = (6x*+ 6y* — 6x,12zy + 6y) = (0,0).

Therefore 0 = 12xy + 6y = 6y(2x + 1). So either y =0 or z = —1/2.
If y =0, then 622 + 6y*> — 6z = 62> — 62 = 6x(r — 1) =0 when z =0 or = = 1.

If z = —1/2, then 62% + 63> — 62 = 1.5 + 6y*> + 3 = 0 has no solutions. So the only critical points are
(0,0) and (1,0).

(b) Find and classify the extrema (out of the choices: local min/ local max/ saddle).
foe = 120 =6, fy, = 12y + 6, fyy = 12y. Since we are looking only where y = 0, let’s plug that in first
to make it easier. So actually

fuz(x,0) = 122 — 6, f(2,0) = 6, fuy(x,0) = 0.

Therefore the Hessian determinant is equal to |H| = 72x — 36. At = = 0, it’s negative, therefore (0, 0)
is a saddle point. At x = 1, it’s positive. Since f,, > 0, we know that (1,0) is a local minimum.

(c¢) Find the absolute maximum and minimum on the right half disk: the region D bounded to the right
by 2% 4+ y? = 1 and to the left by = 0.

Since we have a few y? in our function, I think the best parametrizations to take are
(i) =0, -1<y <L

(i) y=vI—2%0<a < 1;

(iii) y=—v1—-22,0<z <1

We already saw the gradient is never zero in the interior of D, so we just have to check the three
functions above.

(i) f(0,y) = 3y? which has one critical point at y = 0. The values to keep track of here are
£(0,0) =0, £(0,1) = 3, and f(0, —1) = 3.
(ii) Checking the endpoints, f(0,0) =0 and f(1,0) = 2 — 3 = -1. For the rest, see below.
(iii) Checking the endpoints, f(0,0) =0 and f(1,0) = 2 — 3 = -1, as above. For the interior (0, 1),

f(z, £V1 — 22) = 22° + 62(1 — 2°) — 32° + 3(1 — 2*) = —42® — 627 + 62 + 3.

Call the above g(z). Then ¢'(z) = —122? — 122 + 6 = 0 when 2® + z — 1/2 = 0. Using the
quadratic formula, we get
 —1+V3

2

T

1Skip this part unless you really like inequalities, and want to learn how to deal with square roots. I didn’t mean it to be
so messy, I made a typo. Sorry about that.
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but only = = #g might lie in our interval (and does since 0 < —1 ++/3 < —1+2=1).

Since 22 +x — 1/2 = 0,

9 _
?=1/2—-x= \/5
2
Also,
5 o —14+VB2-V3 —5+3V3
P =x-x" == = :
2 2
Finally,

g(z) = —4 <_5+T3\/§> —6 (2 _2‘/§> +6 <_1+‘/§> +3

= (5-3V3) + (—6+3v3) + (-3 +3V3) +3=—1+3V5.

Now 27 > 16, so taking the square root of both sides, we see that 3v/3 > 4 and therefore

~1+4+3v3>3.

So —1 + 3v/3 is the maximum on D and —1 is the minimum.
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4. (20 points) Find the second order Taylor Polynomial of f(z,y) = e*¥ + z* — 2y> at (0,0) using any
correct method.

Most of you got this right, so let me use a different method. Let P be the function taking any C?
function f to its Taylor Polynomial of order 2:

P(f) = Taylor Polynomial of f of order 2.
Fact: P is linear. In particular, P(f + g) = P(f) + P(g). Therefore,

P(e*™ + 2% — 2y) = P(e*™) + P(z2%) + P(—2y%).

The second order expansion of any second degree polynomial is itself, and the second order expansion of a
polynomial with no second degree or lower terms is zero:?

P(2*) = 2%, and P(—2y") = 0.
Finally, we can use Calc 2 methods to write

(2zy)?

P(e*™) =1+ (2zy) + o1

+ ..

Actually this stops at 2zy since all higher order terms are higher than second degree (z%y? is fourth degree,
and so on). Therefore P(e**¥) = 1 + 2zy. Finally,

P(e*™ 4 2% — 2y) = P(e*™) + P(2?) + P(=2y*) = 1 + 22y + 2°.

2 sin(zy)

This method doesn’t always work. For example, if we had e instead of e2*¥, we wouldn’t be able to

apply Calc 2 methods as easily.

2What does this say about the best possible plane/ paraboloid/etc that approximates third degree polynomials?
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