
MTH 254H Midterm 1 October 1st, 2018

1. (20 points)

(a) Define f in R2 by f(x, y) = x1/3y1/3. Find ∂f
∂x

(0, 0).

If you try taking the derivative using Calc 1, you will get 0/0, which is undefined. So we have to do
another method: the definition of derivative.

∂f

∂x
(0, 0) = lim

h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

01/3h1/3 − 01/301/3

h
= lim

h→0

0

h
= 0.

We did this in class – this was one example why partial derivatives don’t exactly reflect differentiability
the way we want.

(b) Define f in R2 by f(x, y) = y cos(| sin(x5)|2). Compute fxyxyx. Justify each step.

We had a theorem that said fxy = fyx as long as f is twice continuously differentiable (C2). Similarly,
if f is C5, then fxyxyx = fyyxxx (actually we only need C4 since we only switch the first four derivatives).
All that’s left is to check f is indeed C5.

There might be a problem because absolute value is not differentiable. So we can’t just use the
argument that the composition and multiplication of C5 functions is C5.

Luckily, |whatever|2 = whatever2. So f(x, y) = y cos(sin(x5)2) = y cos(sin2(x5)). Now you can say that
this is a composition of C5 functions multiplied by a C5 function, and use the theorem.
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2. (30 points) Define f and g from R2 to R2 by g(x, y) = (x2−y2, 2xy). Let f(u, v) = (eu cos(v), eu sin(v)).
Let h(x, y) = (f ◦ g)(x, y). Find Dh(1, 1).

By the Chain Rule, Dh(1, 1) = Df(g(1, 1))Dg(1, 1).
Since g(1, 1) = (12 − 12, 2(1)(1)) = (0, 2), we need to find Df(0, 2) and Dg(1, 1).

Df =

[
∂
∂u
eu cos(v) ∂

∂v
eu cos(v)

∂
∂u
eu sin(v) ∂

∂v
eu sin(v)

]
=

[
eu cos(v) −eu sin(v)
eu sin(v) eu cos(v)

]
,

which at (0, 2) equals [
cos(2) − sin(2)
sin(2) cos(2)

]
.

Next,

Dg =

[
2x −2y
2y 2x

]
,

which at (1, 1) equals [
2 −2
2 2

]
.

Multiplying the two matrices Df with Dg yields[
cos(2) − sin(2)
sin(2) cos(2)

] [
2 −2
2 2

]
=

[
2 cos(2)− 2 sin(2) −2 cos(2)− 2 sin(2)
2 sin(2) + 2 cos(2) −2 sin(2) + 2 cos(2)

]
.

You can think of hx(1, 1) as the left column of this matrix, and hy(1, 1) as the right column.
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3. (30 points) Define f in R2 by f(x, y) = 2x3 + 6xy2 − 3x2 + 3y2.

(a) Find the critical points of f.
We have to solve for

∇f = (6x2 + 6y2 − 6x, 12xy + 6y) = (0, 0).

Therefore 0 = 12xy + 6y = 6y(2x + 1). So either y = 0 or x = −1/2.

If y = 0, then 6x2 + 6y2 − 6x = 6x2 − 6x = 6x(x− 1) = 0 when x = 0 or x = 1.

If x = −1/2, then 6x2 + 6y2 − 6x = 1.5 + 6y2 + 3 = 0 has no solutions. So the only critical points are
(0, 0) and (1, 0).

(b) Find and classify the extrema (out of the choices: local min/ local max/ saddle).
fxx = 12x− 6, fyy = 12y + 6, fxy = 12y. Since we are looking only where y = 0, let’s plug that in first
to make it easier. So actually

fxx(x, 0) = 12x− 6, fyy(x, 0) = 6, fxy(x, 0) = 0.

Therefore the Hessian determinant is equal to |H| = 72x− 36. At x = 0, it’s negative, therefore (0, 0)
is a saddle point. At x = 1, it’s positive. Since fyy > 0, we know that (1, 0) is a local minimum.

(c) Find the absolute maximum and minimum on the right half disk: the region D bounded to the right
by x2 + y2 = 1 and to the left by x = 0.

Since we have a few y2 in our function, I think the best parametrizations to take are

(i) x = 0, −1 ≤ y ≤ 1;

(ii) y =
√

1− x2, 0 ≤ x ≤ 1;

(iii) y = −
√

1− x2, 0 ≤ x ≤ 1.

We already saw the gradient is never zero in the interior of D, so we just have to check the three
functions above.

(i) f(0, y) = 3y2, which has one critical point at y = 0. The values to keep track of here are
f(0, 0) = 0, f(0, 1) = 3, and f(0,−1) = 3.

(ii) Checking the endpoints, f(0, 0) = 0 and f(1, 0) = 2− 3 = -1. For the rest, see below.

(iii) Checking the endpoints, f(0, 0) = 0 and f(1, 0) = 2− 3 = -1, as above. For the interior (0, 1),1

f(x,±
√

1− x2) = 2x3 + 6x(1− x2)− 3x2 + 3(1− x2) = −4x3 − 6x2 + 6x + 3.

Call the above g(x). Then g′(x) = −12x2 − 12x + 6 = 0 when x2 + x − 1/2 = 0. Using the
quadratic formula, we get

x =
−1±

√
3

2
,

1Skip this part unless you really like inequalities, and want to learn how to deal with square roots. I didn’t mean it to be
so messy, I made a typo. Sorry about that.
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but only x = −1+
√
3

2
might lie in our interval (and does since 0 < −1 +

√
3 < −1 + 2 = 1).

Since x2 + x− 1/2 = 0,

x2 = 1/2− x =
2−
√

3

2
.

Also,

x3 = x · x2 ==
−1 +

√
3

2

2−
√

3

2
=
−5 + 3

√
3

4
.

Finally,

g(x) = −4

(
−5 + 3

√
3

4

)
− 6

(
2−
√

3

2

)
+ 6

(
−1 +

√
3

2

)
+ 3

= (5− 3
√

3) + (−6 + 3
√

3) + (−3 + 3
√

3) + 3 = −1 + 3
√

3.

Now 27 > 16, so taking the square root of both sides, we see that 3
√

3 > 4 and therefore
−1 + 3

√
3 > 3.

So −1 + 3
√

3 is the maximum on D and −1 is the minimum.
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4. (20 points) Find the second order Taylor Polynomial of f(x, y) = e2xy + x2− 2y3 at (0, 0) using any
correct method.

Most of you got this right, so let me use a different method. Let P be the function taking any C2

function f to its Taylor Polynomial of order 2:

P (f) = Taylor Polynomial of f of order 2.

Fact: P is linear. In particular, P (f + g) = P (f) + P (g). Therefore,

P (e2xy + x2 − 2y3) = P (e2xy) + P (x2) + P (−2y3).

The second order expansion of any second degree polynomial is itself, and the second order expansion of a
polynomial with no second degree or lower terms is zero:2

P (x2) = x2, and P (−2y3) = 0.

Finally, we can use Calc 2 methods to write

P (e2xy) = 1 + (2xy) +
(2xy)2

2!
+ ...

Actually this stops at 2xy since all higher order terms are higher than second degree (x2y2 is fourth degree,
and so on). Therefore P (e2xy) = 1 + 2xy. Finally,

P (e2xy + x2 − 2y3) = P (e2xy) + P (x2) + P (−2y3) = 1 + 2xy + x2.

This method doesn’t always work. For example, if we had e2 sin(xy) instead of e2xy, we wouldn’t be able to
apply Calc 2 methods as easily.

2What does this say about the best possible plane/ paraboloid/etc that approximates third degree polynomials?
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