Homework 6

The following are due on Friday, October 12:
$\S 4.3 \# 9,10^{1}, 24^{2}$.
§4.4 \#1, 21, 33, 37 .
$\S 5.1 \# 3,5,7$.
§5.2 \#12.
Vector field homework problem. We use the heuristic for a C^{2} vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that

$$
\nabla \cdot \nabla \times \mathbf{F}=0
$$

because for any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$,

$$
\mathbf{u} \cdot \mathbf{u} \times \mathbf{v}=0
$$

But obviously $\mathbf{v} \cdot \mathbf{u} \times \mathbf{v}=0$ holds as well.

Problem:

(a) Show that if the vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ can be expressed as $\mathbf{F}=g \nabla f$ for some C^{1} scalar functions $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$, then

$$
\mathbf{F} \cdot \nabla \times \mathbf{F}=0 .^{3}
$$

(b) If $\mathbf{F}=\left(F_{1}(x, y), F_{2}(x, y), 0\right)$, show that $\mathbf{F} \cdot \nabla \times \mathbf{F}=0$.
(c) Find an example of a vector field \mathbf{F} such that $\mathbf{F} \cdot \nabla \times \mathbf{F} \neq 0$.

[^0]
[^0]: ${ }^{1}$ Justify why for both 9 and 10. Try to find a systematic method that might work for any problem like these.
 ${ }^{2}$ This is another proof that gradient points in the direction of greatest increase
 ${ }^{3}$ The converse also holds! Namely, if $\mathbf{F} \cdot \nabla \times \mathbf{F}=0$, then \mathbf{F} is of this form. However, this is very difficult to prove with what we know so far. Particularly, $\mathbf{F} \cdot \nabla \times \mathbf{F}$ is nonzero in general.

