Homework 6

The following are due on Friday, October 12:

 $\S4.3 \ \#9, 10^1, 24^2.$

 $\S4.4 \ \#1, 21, 33, 37.$

5.1 # 3, 5, 7.

 $\S5.2 \#12.$

Vector field homework problem. We use the heuristic for a C^2 vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ that

 $\nabla \cdot \nabla \times \mathbf{F} = 0$

because for any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$,

$$\mathbf{u} \cdot \mathbf{u} \times \mathbf{v} = 0.$$

But obviously $\mathbf{v} \cdot \mathbf{u} \times \mathbf{v} = 0$ holds as well. **Problem:**

(a) Show that if the vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ can be expressed as $\mathbf{F} = g\nabla f$ for some C^1 scalar functions $f, g : \mathbb{R}^3 \to \mathbb{R}$, then

$$\mathbf{F} \cdot \nabla \times \mathbf{F} = 0.3$$

- (b) If $\mathbf{F} = (F_1(x, y), F_2(x, y), 0)$, show that $\mathbf{F} \cdot \nabla \times \mathbf{F} = 0$.
- (c) Find an example of a vector field \mathbf{F} such that $\mathbf{F} \cdot \nabla \times \mathbf{F} \neq 0$.

 $^{^1\}mathrm{Justify}$ why for both 9 and 10. Try to find a systematic method that might work for any problem like these.

 $^{^{2}}$ This is another proof that gradient points in the direction of greatest increase

³The converse also holds! Namely, if $\mathbf{F} \cdot \nabla \times \mathbf{F} = 0$, then \mathbf{F} is of this form. However, this is very difficult to prove with what we know so far. Particularly, $\mathbf{F} \cdot \nabla \times \mathbf{F}$ is nonzero in general.