A solution from Homework 1

§1.3.38:

Analytically, we can solve for the angle θ between a and \mathbf{x} in terms of $\|\mathbf{a}\|$ and $\|\mathbf{b}\|$. We know that

$$
\|\mathbf{a}\|=\mathbf{x} \cdot \mathbf{a}=\|\mathbf{x}\|\|\mathbf{a}\| \cos (\theta)
$$

and

$$
\|\mathbf{b}\|=\|\mathbf{x} \times \mathbf{a}\|=\|\mathbf{x}\|\|\mathbf{a}\| \sin (\theta) .
$$

So

$$
\|\mathbf{b}\| /\|\mathbf{a}\|=\tan (\theta)
$$

The only case when the above division doesn't make sense is when $\|\mathbf{a}\|=0$, so \mathbf{a} is the zero vector. Indeed in this case \mathbf{b} must also be the zero vector from the cross product information we were given, and in this case any \mathbf{x} satisfies the given equations. Otherwise, $\theta=\arctan (\|\mathbf{b}\| /\|\mathbf{a}\|)$ and so we know the angle between \mathbf{a} and \mathbf{x}.

Geometrically, the right hand rule tells us which way x is pointing with respect to \mathbf{a} and \mathbf{b}; for example, if \mathbf{a} is on the y-axis and \mathbf{b} is on the z-axis, we know \mathbf{x} must be in the $x y$-plane, since \mathbf{b} is orthogonal to both \mathbf{x} and \mathbf{a} (and in fact must be in the first quadrant of the $x y$-plane since $\cos (\theta) \geq 0$).

Since we know the angle between \mathbf{x} and \mathbf{a}, the length of \mathbf{x} (this is not enough yet since \mathbf{x} can be on the "right" or the "left" of \mathbf{a}), and the orientation of \mathbf{x} with respect to \mathbf{a}, we know \mathbf{x} completely.

