A solution from Homework 1

§1.3.38:

Analytically, we can solve for the angle θ between **a** and **x** in terms of $||\mathbf{a}||$ and $||\mathbf{b}||$. We know that

$$\|\mathbf{a}\| = \mathbf{x} \cdot \mathbf{a} = \|\mathbf{x}\| \|\mathbf{a}\| \cos(\theta),$$

and

$$\|\mathbf{b}\| = \|\mathbf{x} \times \mathbf{a}\| = \|\mathbf{x}\| \|\mathbf{a}\| \sin(\theta).$$

 So

$$\|\mathbf{b}\|/\|\mathbf{a}\| = \tan(\theta).$$

The only case when the above division doesn't make sense is when $\|\mathbf{a}\| = 0$, so **a** is the zero vector. Indeed in this case **b** must also be the zero vector from the cross product information we were given, and in this case any **x** satisfies the given equations. Otherwise, $\theta = \arctan(\|\mathbf{b}\|/\|\mathbf{a}\|)$ and so we know the angle between **a** and **x**.

Geometrically, the right hand rule tells us which way \mathbf{x} is pointing with respect to \mathbf{a} and \mathbf{b} ; for example, if \mathbf{a} is on the y-axis and \mathbf{b} is on the z-axis, we know \mathbf{x} must be in the xy-plane, since \mathbf{b} is orthogonal to both \mathbf{x} and \mathbf{a} (and in fact must be in the first quadrant of the xy-plane since $\cos(\theta) \ge 0$).

Since we know the angle between \mathbf{x} and \mathbf{a} , the length of \mathbf{x} (this is not enough yet since \mathbf{x} can be on the "right" or the "left" of \mathbf{a}), and the orientation of \mathbf{x} with respect to \mathbf{a} , we know \mathbf{x} completely.