
Homework 12 Solutions
8.1.10 Find the area of the disc D of radius R using Green’s Theorem.

One formula for the area of a region R with boundary C was

Area =

¨
R

dA =
1

2

˛
C

xdy − ydx.

Assume the disk is (x− a)2 + (y− b)2 = R2. We can parametrize the boundary
counterclockwise by

c(t) = (a+R cos(t), b+R sin(t)), 0 ≤ t ≤ 2π.

Then
c′(t) = (−R sin(t), R cos(t)) = (x′(t), y′(t)).

Therefore

xdy−ydx = (a+R cos(t))(R cos(t))−(b+R sin(t))(−R sin(t)) = R2+aR cos(t)+bR sin(t).

After parametrizing, the integral becomes

ˆ 2π

0

R2 + aR cos(t) + bR sin(t)dt = 2πR2.

Dividing by two gets us the correct area.

8.1.19

(a) Verify the divergence theorem for F = (x, y) and D the unit disc x2+y2 ≤
1. We have
¨
D

∇ · FdA =

¨
D

2dA = 2(π12) = 2π =

ˆ 2π

0

cos2(t) + sin2(t)dt

=

ˆ 2π

0

(cos(t), sin(t)) · (cos(t), sin(t))

√
sin2(t) + cos2(t)dt =

ˆ
C

F · nds.

We used the fact that n, the unit normal, is just (cos(t), sin(t)) for any1

circle.

(b) Evaluate the integral of the normal component (2xy,−y2) around the
ellipse defined by x2/a2 + y2/b2 = 1.

Here we use the divergence theorem to transform the integral into
¨

ellipse

∇ · FdA =

¨
ellipse

2y − 2ydA = 0.

1Of course it depends on your parametrization.
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8.1.25 Sketch the proof of Green’s Theorem for the region shown in Figure
8.1.10.

It’s enough here to split horizontally at the “local maximum”of the bottom
of the region.

8.2.8 Let C be the closed piecewise smooth curve formed by traveling in straight
lines between the points (0, 0, 0), (2, 1, 5), (1, 1, 3), and back to the origin, in that
order. Use Stokes’ Theorem to evaluate the integral:

ˆ
C

xyzdx+ xydy + xdz.

Three points define a plane. In this case, these three points (connected by
straight lines) lie in the plane z = 2x + y (recall how to find the equation of a
plane using the normal vector).

The curl of F = (xyz, xy, x) equals to ∇× F = (0, xy − 1, y − xz).
Parametrizing the plane z = 2x + y = f(x, y) as a function, Φ(x, y) =

(x, y, f(x, y)), which has upward facing normal Φx × Φy = (−fx,−fy, 1) =
(−2,−1, 1). We need this normal vector, because looking at the curve from
above, we see that in the xy−plane it travels counterclockwise: (0, 0)→ (2, 1)→
(1, 1) → (0, 0). Therefore Stokes’ Theorem tells us we need the upward facing
normal.

Now we need to compute

∇× F · dS = −(xy − 1) + (y − x(2x+ y))dxdy = 1− xy + y − 2x2 − xydxdy

= 1 + y − 2xy − 2x2dxdy.

By Stokes’ Theorem,

˛
C

F · ds =

¨
D

∇× FdA =

ˆ 1

0

ˆ 2y

y

1 + y − 2xy − 2x2dxdy

=

ˆ 1

0

y + y2 − 23

3
y3dy =

1

2
+

1

3
− 23

12
= −13

12
.

If you just computed the line integral, you would also have to integrate a cubic
polynomial.

8.2.14 Let c consist of straight lines joining (1, 0, 0), (0, 1, 0), and (0, 0, 1), and
let S be the triangle with these vertices. Verify Stokes’ Theorem directly with
F = (yz, xz, xy).

We’ve done the line integral part of a very similar question (see midterm 2
solutions). I will only do the double integral here: to set up the region (same
as the above question), consider the triangle made in the xy−plane: it travels
counterclockwise (1, 0) → (0, 1) → (0, 0) → (1, 0). So we need the upward
normal vector. In this case, all lines are in the plane z = 1−x− y. The upward
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normal from the usual function parametrization of a surface is (1, 1, 1). The curl
of F turns out to be zero, so the integral is just zero.

Notice that F = ∇(xyz), so the Fundamental Theorem of Line Integrals also
tells us the path integral is zero.

8.2.18 Find
˜
S
∇× F · dS, where S is the ellipsoid x2 + y2 + 2z2 = 10 and F

is the vector field (sin(x, y), ex,−yz).
This looks like a nice problem for going the other way with Stokes’ Theorem:

there is no boundary, so we can split up S into two regions with the same
boundary, with the boundary curve of one having opposite orientation of the
other. By Stokes’ Theorem,

¨
S

∇× F · dS =

¨
S1

∇× F · dS +

¨
S2

∇× F · dS =

ˆ
C

F · ds +

ˆ
−C

F · ds.

You should justify why the curves have opposite orientation (similar to the ar-
gument for Green’s Theorem for general regions, e.g., 8.1.25 above).

8.2.23 Consider two surfaces S1 and S2 with the same boundary C. Describe
with sketches how S1 and S2 must be oriented to ensure

ˆ
S1

∇× F · dS =

ˆ
S2

∇× F · dS.

By considering the special case S1 = S2, we see that they need to be oriented
opposite with respect to each other in order for these two integrals to be equal.

8.3.1 Determine which of the following vector fields F in the plane is the gradient
of a scalar function f . If such an f exists, find it.

(a) F = (x, y) is the gradient of (x2 + y2)/2.

(b) F = (xy, xy) is not a gradient since its curl is (0, 0, y − x).

(c) F = (x2 + y2, 2xy) has zero curl, and so I found that it’s the gradient of
x3/3 + xy2.

8.3.17 Determine if the following vector fields F are gradient fields. If there
exists a function f such that ∇f = F, find f.

(a) F = (2xyz, x2z, x2y): by observation, it’s easy to tell F = ∇x2yz.

(b) F = (x cos(y), x sin(y)) has nonzero curl.

(c) F = (x2ey, xyz, ez) has nonzero curl since the i component is −xy.

(d) F = (2x cos(y),−x2 sin(y)) is the gradient of x2 cos(y).
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8.3.28 Let G be the vector field on R3 − {(x, y, z) : x = y = 0} defined by

G =

(
−y

x2 + y2
,

x

x2 + y2

)
.

(a) Show that G is irrotational.

This is because the curl is zero.

(b) Show that flow lines of G are circles.

Check that F(R cos(t), R sin(t)) = (R cos(t), R sin(t))′.

(c) How can we resolve the fact that the trajectories of F = (−y, x) and G
are both the same, yet F is rotational and G is not?

Being rotational is a local (infinitesimal) property that has nothing to do
with flow lines. G rotates something in a circle while never rotating it lo-
cally, like moving in a circle while always facing forward, while F rotates
in a circle while rotating locally, like driving around in a circle.

8.4.12 Evaluate
˜
S

F · dS, where F = (3xy2, 3x2y, z3) and S is the surface of
the unit sphere (centered at the origin).

Use the Divergence Theorem:‹
S

F · dS =

˚
E

∇ · FdV.

The divergence of F turns out to be 3(x2 + y2 + z2) = 3ρ2. Changing variables
to spherical, the integral becomes

ˆ 2π

0

ˆ π

0

ˆ 1

0

3ρ4 sin(φ)dρdφdθ = 2π · 2 · 3

5
=

12π

5
.

8.4.14 Let W be the three-dimensional solid enclosed by the surfaces x =
y2, x = 9, z = 0, and x = z. Let S be the boundary of W . Use the Divergence
Theorem to find the flux of F(x, y, z) = (3x− 5y, 4z − 2y, 8yz) across S.

Since the divergence of the vector field is just 1+8y, the hard part is setting
up the triple integral. I know that y2 ≤ x ≤ 9 because y2 ≤ 9 is bounded
and 9 ≤ y2 is not, and I also know 0 ≤ z ≤ x since x is positive. To get
the y−bounds, I have no additional information, and therefore I must set the
x−bounds equal: y2 = 9 so −3 ≤ y ≤ 3. The triple integral is
ˆ 3

−3

ˆ 9

y2

ˆ x

0

1 + 8ydzdxdy =

ˆ 3

−3

ˆ 9

y2
(1 + 8y)xdxdy =

ˆ 3

−3
(1 + 8y)

(
81− y4

2

)
dy.

If we factor out the left term, notice that 8y(even function) is an odd function
over the interval [−3, 3], so its integral is zero. We are left with

=

ˆ 3

−3

(
81− y4

2

)
dy = 243− 243/5 = 972/5.
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8.4.15 Evaluate
˜
∂W

F · ndA, where F(x, y, z) = (x, y,−z) and W is the unit
cube in the first octant. Perform the calculation directly and check by using the
Divergence Theorem.

I partially did this problem in class, but accidentally used a different cube.
The notation above is the same as F ·dS. We break up this surface integral into
six pieces: the sides x = 0, 1; y = 0, 1; z = 0, 1.

On either one of x, y, z = 0, F will have a zero component in the same place
that the normal vector has its only nonzero component.

• On x = 1, the normal is n = (1, 0, 0) and F = (x, y,−z) = (1, 0, 0), so the
dot product is just 1.

• On y = 1, the normal is n = (0, 1, 0) and F = (x, y,−z) = (0, 1, 0), so the
dot product is just 1.

• On z = 1, the normal is n = (0, 0, 1) and F = (x, y,−z) = (0, 0,−1), so
the dot product is -1.

Summing over all six sides, we get 0 + 0 + 0 + 1 + 1 +−1 = 1.
Using the Divergence Theorem, ∇ · F = 1 + 1 − 1 = 1 as well, and we are

integrating over the unit cube (the cube with side length 1 and therefore volume
1), so we get

˝
E

1dV = 1.

8.4.16 Evaluate the surface integral
˜
∂W

F · ndA, where

F(x, y, z) = (1, 1, z(x2 + y2)2)

and W is the solid cylinder x2 + y2 ≤ 1, 0 ≤ z ≤ 1.
Divergence Theorem, then changing to cylindrical, tells us

¨
∂W

F · ndA =

ˆ 2π

0

ˆ 1

0

ˆ 1

0

(r2)2dzrdrdθ = 2π

ˆ 1

0

r5dr =
π

3
.

8.4.21 Prove Green’s identities:¨
∂W

f∇g · dS =

˚
W

(f∇2g +∇f · ∇g)dV

and ¨
∂W

(f∇g − g∇f) · dS =

˚
W

(f∇2g − g∇2f)dV.

The second identity is an easy consequence of the first. The crux of the first
identity is showing that ∇·(f∇g) = f∇2g+∇f ·∇g. To show this, you just need
to know that ∇2g is notation for the Laplacian of g, ∇2g = ∆g = gxx+gyy+gzz.
Just take the divergence as you normally would.
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8.5.1 Evaluate ω∧η if ω = xdx+ydy+zdz and η = zdx∧dy+xdy∧dz+ydz∧dx.
The answer is (x2 + y2 + z2)dx ∧ dy ∧ dz.

8.5.2 Prove the following, which shows dot product is also a special case of a
wedge product:

(a1dx+a2dy+a3dz)∧(b1dy∧dz+b2dz∧dx+b3dx∧dy) =

(
3∑
i=1

aibi

)
dx∧dy∧dz.

8.5.3 Find d of ω = xdx ∧ dy + zdy ∧ dz + ydz ∧ dx.
This is just correctly using the distribution and anticommutativity relations

for wedge product.

8.5.11 Let T be the triangular solid bounded by x = 0, y = 0, z = 0, and the
plane 2x+ 3y + 6z = 12. Compute

¨
∂T

F1dxdy + F2dzdx+ F3dxdy

directly and by Stokes’ Theorem, if

(a) F1 = 3y, F2 = −12, F3 = 18z; and

(b) F1 = z, F2 = y, F3 = x2.

By the definition of integrating a 2−form from page 481,

¨
S

F1dydz+F2dzdx+F3dxdy =

¨
D

(
F1(Φ)

∂(y, z)

∂(u, v)
+ F2(Φ)

∂(z, x)

∂(u, v)
+ F3(Φ)

∂(x, y)

∂(u, v)

)
dudv,

where
∂(a, b)

∂(u, v)
=

∣∣∣∣∂a/∂u ∂a/∂v
∂b/∂u ∂b/∂v

∣∣∣∣ .
With this notation, the general Stokes’ Theorem simply says

¨
S

F1dydz + F2dzdx+ F3dxdy =

˚
E

∇ · (F1, F2, F3)dV,

which you can compute yourself. I will just simplify the surface integrals to
double integrals below.

First, let’s parametrize the plane by Φ(x, y) = (x, y, 2 − y/2 − x/3). Then
we can compute for z = 2− y/2− x/3 that:

∂(x, y)

∂(x, y)
= 1,

∂(y, z)

∂(x, y)
= 1/3,

∂(z, x)

∂(x, y)
= 1/2.

So the integral above is just equal to

¨
D

(F1/3 + F2/2 + F3)dA =

ˆ 6

0

ˆ 4−2x/3

0

(F1/3 + F2/2 + F3)dydx.
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(a)

ˆ 6

0

ˆ 4−2x/3

0

(F1/3+F2/2+F3)dydx =

ˆ 6

0

ˆ 4−2x/3

0

(y−6+18(2−y/2−x/3))dydx.

(b)

ˆ 6

0

ˆ 4−2x/3

0

(F1/3+F2/2+F3)dydx =

ˆ 6

0

ˆ 4−2x/3

0

((2−y/2−x/3)/3+y/2+x2)dydx.

Let me know if there are any other problems from chapter 8 you weren’t
sure about.
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