
Homework 11 Solutions
7.6.2 Evaluate the surface integral∫∫

S

F · dS

where F(x, y, z) = (x, y, z2) and S is the surface parametrized by Φ(u, v) =
(2 sin(u), 3 cos(u), v) with 0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.

The solution below assumes the surface is parametrized outwards.
First,

F(Φ(u, v)) = (2 sin(u), 3 cos(u), v2).

Next, we have to find the outward normal vector:

Φu ×Φv = (2 cos(u),−3 sin(u), 0)× (0, 0, 1) = (−3 sin(u),−2 cos(u), 0).

This is the inward facing vector, so we should instead take its negative:

dS = (3 sin(u), 2 cos(u), 0)dudv.

So ∫∫
S

F · dS =

∫ 1

0

∫ 2π

0

6 sin2(u) + 6 cos2(u)dudv = 12π.

7.6.4 Let F(x, y, z) = (2x,−2y, z2). Evaluate∫∫
S

F · dS,

where S is the cylinder x2 + y2 = 4 with z ∈ [0, 1].
Note that the top and bottom are not explicitly included in this integral. If

it said the boundary of the solid cylinder, they would be.
So we just need to integrate the cylinder, which we can parametrize by

Φ(z, θ) = (2 cos(θ), 2 sin(θ), z), which (you can check) has outward normal

Φθ ×Φz = (2 cos(θ), 2 sin(θ), 0).

So
F · dS = (2 cos(θ),−2 sin(θ), z2) · (2 cos(θ), 2 sin(θ), 0)dθdz

= 4 cos2(θ)− 4 sin2(θ)dθdz = 4 cos(2θ)dθdz.

Integrating this over 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 1 gives 0 because of the integral
of cos(2θ).

7.6.12 A restaurant is being built on the side of a mountain. The architect’s
plans are shown in Figure 7.6.11 (it’s the surface with side the cylinder x2 +
(y −R)2 = R2, bounded below by the surface x2 + y2 + z = 4R2 = (2R)2, and
top z = 4R2).
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(a) The vertical curved wall of the restaurant is to be built of glass. What
will be the surface area of this wall?

To parametrize the cylinder x2+(y−R)2 = R2, we can let x = R cos(θ)/2,
y − R = R sin(θ) and z = z for 0 ≤ θ ≤ 2π and 4R2 − (R cos(θ))2 −
(R + R sin(θ))2 ≤ z ≤ 4R2. These are the theta bounds because our
parametrization gives circles centered at (0, R) for constant radii, where
θ = 0 is perpendicular to the y−axis. Check that

Φθ ×Φz(θ, z) = (R cos(θ), R sin(θ), 0), (1)

and therefore
‖Φθ ×Φz‖ = R.

so, after simplifying the bounds for z, the integral is∫ 2π

0

∫ 4R2

2R2(1−sin(θ))

Rdzdθ =

∫ 2π

0

2R3 + 2R3 sin(θ)dθ = 4πR3.

(b) To be large enough to be profitable, the consulting engineer informs the
developer that the volume of the interior must exceed πR4/2. For what
R does the proposed structure satisfy this requirement?

Let’s use the cylindrical coordinates from part (a) so that x = r cos(θ), y =
R + r sin(θ) and z = z, where 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R, and z is bounded
between 4R2−(r cos(θ))2−(R+r sin(θ))2 = 3R2−r2−2rR sin(θ) and 4R2.
The Jacobian is the same as regular cylindrical because adding constants
to x or y in a change of variables doesn’t change the Jacobian. The volume
integral is∫ 2π

0

∫ R

0

∫ 4R2

3R2−r2−2rR sin(θ)

rdzdrdθ =

∫ 2π

0

∫ R

0

[R2 +r2 +2rR sin(θ)]rdrdθ

=

∫ 2π

0

R4

2
+
R4

4
+

2R4

3
sin(θ)dθ =

3πR4

2
.

So for all R the volume exceeds the requirement. Notice that the volume
must be less than half the volume of the cylinder, which is 2πR4. However,
it might be surprising that it’s a constant function of R4.

(c) During a typical summer day, the environs of the restaurant are subject
to a temperature given by

T (x, y, z) = 3x2 + (y −R)2 + 16z2.

A heat flux density −k∇T (k is a constant depending on the insulation
to be used) through all sides of the restaurant (including the top and the
contact with the hill) produces a heat flux. What is this total heat flux?
(Your answer will depend on R and k.)
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The gradient of T is (6x, 2(y −R), 32z).

We split the surface integral into three parts, as in part (a). We start
with the cylinder. In cylindrical coordinates (from the past two parts) the
gradient of T is equal to (6R cos(θ), 2R sin(θ), 32z).

From equation (1), part (a), dS = (R cos(θ), R sin(θ), 0)dzdθ. However,
we need the unit vector to point inward because we are thinking about
temperature coming into the restaurant. So we reverse the sign and get

−k∇T ·(−R cos(θ),−R sin(θ), 0) = k(6R2 cos2(θ)+2R2 sin2(θ)) = k(4R2 cos2(θ)+2).

So the flux through this part is∫ 2π

0

∫ 4R2

2R2(1−sin(θ))

k(4R2 cos2(θ) + 2)dzdθ

=

∫ 2π

0

k(4R2 cos2(θ) + 2)(2R2 + 2R2 sin(θ))dθ = 16πkR4.

Next, the top has inward normal vector (0, 0,−1) in the region x2 + (y −
R)2 = R2. In this case −k∇T = −k(0, 0, 32) and the integral becomes∫∫

x2+(y−R)2≤R2

32kdA = 32πkR2

The bottom part of the restaurant can be parametrized by (x, y, 4R2 −
x2 − y2) and has upward normal (2x, 2y, 1). In this case

−k∇T · (2x, 2y, 1) = −k(12x2 + 4y(y −R) + 32(4R2 − x2 − y2))

= k(20x2 + 28y2 + 4Ry − 128R2).

The integral is∫∫
x2+(y−R)2≤R2

k(20x2 + 28y2 + 4Ry − 128R2)dA.

In the usual polar coordinates, x = r cos(θ), y = r sin(θ), the region be-
comes r2 ≤ 2rR sin(θ). Setting these two equal, r = 0 or r = 2R sin(θ).
Now setting these limits equal, θ = 0, π. The integral becomes∫ π

0

∫ 2R sin(θ)

0

k(20r2 + 8r2 sin2(θ) + 4Rr sin(θ)− 128R2)rdrdθ

= k

∫ π

0

∫ 2R sin(θ)

0

20r3 + 8r3 sin2(θ) + 4Rr2 sin(θ)− 128R2rdrdθ

= k

∫ π

0

5(2R sin(θ))4+2(2R sin(θ))4 sin2(θ)+
4R

3
(2R sin(θ))3 sin(θ)−64R2(2R sin(θ))2dθ.
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We use the following: ∫ π

0

sin2n(θ)dθ =
1

4n

(
2n

n

)
π.

We need it for n = 1, 2, 3. (You are expected to compute these by hand
for these values of n...) Using this, the above integral equals

k(30πR4 + 10πR4 + 4πR4 − 128πR4) = −84πR4.

So the total flux is kR2(32π − 68πR2).

(Please let me know if you find a typo anywhere.)

7.6.15 Let S be the surface of the unit sphere. Let F be a vector field and Fr
its radial component. Prove that∫∫

S

F · dS =

∫ 2π

0

∫ π

0

Fr sin(φ)dφdθ.

What is the corresponding formula for real-valued functions f?
By definition of radial part, Fr = F · n where n is the unit normal of the

sphere (it’s a function of θ, φ but not ρ, hence it’s radial: only depends on a
fixed radius). Using this same notation for n, we have computed before that for
the unit sphere, dS = n sin(φ)dφdθ. Using this definition, the formula is clear
since n · n = 1.

I’m not sure what they mean by a corresponding formula for functions f.
According to the back of the book, they just want you to compute what dS is
...? The only radial part I can think of for a real-valued function is |f |.

7.6.17 Work out a formula like that in Exercise 15 for integration over the
surface of a cylinder.

Now the radial part of F is such that Fr = F ·n where n = (cos(θ), sin(θ), 0),
the unit normal of a cylinder. Similarly to the above problem, we have computed
(e.g., problem 7.6.12) dS = (R cos(θ), R sin(θ), 0)dzdθ = nRdzdθ. So in this
case, integrating over a cylinder of radius R, the formula is∫ 2π

0

∫ b

a

FrRdzdθ = R

∫ 2π

0

∫ b

a

Frdzdθ.

7.6.21 For a, b, c > 0, let S be the upper half ellipsoid

S =

{
(x, y, z) ∈ R3 :

x2

a2
+
y2

b2
+
z2

c2
= 1, z ≥ 0

}
,

with orientation determined by the upward normal. Compute
∫∫
S

F · dS where
F(x, y, z) = (x3, 0, 0).
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I assume they don’t mean the half ellipsoid closed surface (including the
bottom), as we have already done surface integrals over functions z =constant
many times. We can parametrize a surface contained in the above ellipsoid
by Φ(φ, θ) = (a cos(θ) sin(φ), b sin(θ) sin(φ), c cos(φ)). Then the outward normal
vector with respect to Φ is

Φφ ×Φθ = sin(φ)(bc cos(θ) sin(φ), ac sin(θ) sin(φ), ab cos(φ)).

By definition of F, you only needed to compute the first component, since that’s
all the dot product sees. Now

F·dS = bc sin(φ)(a cos(θ) sin(φ))3(cos(θ) sin(φ))dφdθ = a3bc cos4(θ) sin5(φ)dφdθ.

Finally,∫
S

F·dS =

∫ 2π

0

∫ π

0

a3bc cos4(θ) sin5(φ)dφdθ = a3bc

(∫ 2π

0

cos4(θ)dθ

)(∫ π

0

sin5(φ)dφ

)
.

The theta integral requires two double angle formulas and the phi integral re-
quires the trig sub sin4(θ) = (1 − cos2(θ))2; you can plug into Wolfram Alpha
to get the answer.

7.7.8 Find the curvature K of the following.

(a) The cylinder Φ(u, v) = (2 cos(v), 2 sin(v), u).

We compute:

Φu = (0, 0, 1), Φv = (−2 sin(v), 2 cos(v), 0),

Φuu = (0, 0, 0),Φuv = (0, 0, 0), Φvv = (− cos(v),− sin(v), 0).

Now it doesn’t matter what N is because ` = m = 0. Therefore K
is always zero. This might seem weird, but K is actually the product
of principal curvatures: the curvature perpendicular to the xy−plane is
always zero, although the curvature parallel to the xy−plane is not zero.
It turns out H is the average of these two sectional curvatures, and in
this case it would not be zero, but the radius of the cylinder divided by
two. (You can compute to see that these two curvatures multiply to zero
and sum to 1/2, and therefore one is zero and the other is 1/2. But 1/2 is
exactly the curvature of a circle of radius 2. You can think of the curvature
1/R2 of a sphere as the product of its two principal curvatures 1/R of the
circles contained in it.)

(b) The surface Φ(u, v) = (u, v, u2).

Again we first compute

Φu = (1, 0, 2u), Φv = (0, 1, 0),

Φuu = (0, 0, 2), Φuv = (0, 0, 0), Φvv = (0, 0, 0).

Now m = n = 0, so again K = 0. This is because we just have z = x2 and
cross sections along y =constant are just lines, so there is a direction in
which a principal curvature vanishes.
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7.7.9 Show that Enneper’s surface

Φ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)
is a minimal surface (H = 0).

Again we compute

Φu = (1− u2 + v2, 2uv, 2u), Φv = (2uv, 1− v2 + u2,−2v),

Φuu = (−2u, 2v, 2),Φuv = (2v, 2u, 0), Φvv = (2u,−2v,−2).

Now you can check that these equations were made so that

E = G = (1 + u2 + v2)2 and F = 0.

Also, we need Φu ×Φv = (−2u(1 + u2 + v2), 2v(1 + u2 + v2), 1 − (u2 + v2)2),
since

N =
Φu ×Φv√
EG− F 2

=

(
−2u, 2v,

1− (u2 + v2)2

1 + u2 + v2

)
.

Now

G` = GN ·Φuu = (1 + u2 + v2)(4(u2 + v2)(1 + u2 + v2) + 2(1− (u2 + v2)2))

and you can compute that
En = −G`.

Since F = 0, the mean cuvature is H = (G`+En−2Fm)/(2W ) = 0/(2W ) = 0.
Therefore this surface is minimal.
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