1. (10 points) Define the curve $\mathbf{c}(t)=\left(t, \ln (t), e^{t^{2}}\right)$ in the interval $1 \leq t \leq 2$. Let

$$
\mathbf{F}=\left(y e^{x y} \sin (x z)+e^{x y} z \cos (x z), x e^{x y} \sin (x z), x e^{x y} \cos (x z)\right) .
$$

Compute $\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s}$.
Solution: Notice that $\mathbf{F}=\nabla f$ where $f=e^{x y} \sin (x z)$. By the fundamental theorem of line integrals,

$$
\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s}=f(\mathbf{c}(2))-f(\mathbf{c}(1))=f\left(2, \ln (2), e^{4}\right)-f(1,0, e)=4 \sin \left(2 e^{4}\right)-\sin (e) .
$$

2. (10 points) Consider the piece of the plane

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

in the first octant.
(a) Where does the plane intersect the x, y, and z axes?
(b) Find the surface area of this piece of the plane.
(c) Consider the tetrahedron made by this plane and the triangles it makes in the $x y, y z$, and $x z$ planes (the coordinate planes). Find the areas of the remaining three triangles.
(d) (Extra credit:) Find a formula relating the areas of the three triangles in the coordinate planes and the area of the "hypotenuse" plane from part (a).

Solutions:

(a) Plugging in $y=0=z$ gives us the x-intercept $x=a$. Similarly, $y=b$ and $z=c$ and the y, z intercepts, respectively. Note that this is a convenient way to write the equation of a plane in "intercept-form."
(b) The surface area of a function is given by

$$
\iint_{S} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A
$$

In this case, we can solve for $z=c-c x / a-c y / b$ and set up the integral as

$$
\begin{gathered}
\int_{0}^{b} \int_{0}^{a-a y / b} \sqrt{1+c^{2} / a^{2}+c^{2} / b^{2}} d x d y=\sqrt{1+c^{2} / a^{2}+c^{2} / b^{2}} \int_{0}^{b} a-a y / b d y \\
=\sqrt{1+c^{2} / a^{2}+c^{2} / b^{2}}(a b-a b / 2)=\frac{1}{2} \sqrt{a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}}
\end{gathered}
$$

(c) The triangles are right triangles with side lengths found in (a). The respective areas are $a b / 2, b c / 2$ and $a c / 2$.
(d) Letting $A=b c / 2, B=a c / 2, C=a b / 2$, and $D=\frac{1}{2} \sqrt{a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}}$, notice the nice generalization of the Pythagorean Theorem for right tetrahedrons:

$$
A^{2}+B^{2}+C^{2}=D^{2}
$$

3. (10 points) Let $\mathbf{F}=(x,-2 y, z)$ be a vector field on \mathbb{R}^{3}. Find the upward flux of the vector field through the surface given by $z=x^{2} y$ in the region $x^{2}+4 y^{2}=1, x \geq 0$.
Solution: The surface is the graph of a function and therefore can be parametrized by $(x, y, x y)$, and has upward normal vector $(y, x, 1)$. The flux is given by the surface integral

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{x^{2}+4 y^{2} \leq 1}\left(x,-2 y, x^{2} y\right) \cdot\left(2 x y, x^{2}, 1\right) d A=\iint_{x^{2}+4 y^{2} \leq 1} x^{2} y d A .
$$

We can change variables by $x=r \cos (\theta), y=r \sin (\theta) / 2$, with $0 \leq r \leq 1,-\pi / 2 \leq \theta \leq \pi / 2$ in which case $d A=r / 2$. Therefore the above integral becomes

$$
\int_{0}^{1} \int_{-\pi / 2}^{\pi / 2} r^{3} \cos ^{2}(\theta) \sin (\theta) / 2(r / 2) d r d \theta=\frac{1}{4} \int_{0}^{1} r^{4} d r \int_{-\pi / 2}^{\pi / 2} \cos ^{2}(\theta) \sin (\theta) d \theta=\frac{1}{4} \cdot \frac{1}{5} \cdot\left(-\left.\frac{\cos ^{3}(\theta)}{3}\right|_{-\pi / 2} ^{\pi / 2}\right)=0
$$

