1. (10 points) Let $D=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 2, \quad 0 \leq y \leq x, \quad 0 \leq z \leq y\right\}$.

Write $\iiint_{D} x^{2} d V$ as an iterated integral in terms of $d z d y d x, d z d x d y, d x d z d y$, and $d x d y d z$.
Solution: By switching two consecutive integrals at a time (draw the 2-D regions), we can see that

$$
\begin{aligned}
& \iiint_{D} x^{2} d V \\
= & \int_{0}^{2} \int_{0}^{x} \int_{0}^{y} x^{2} d z d y d x \\
= & \int_{0}^{2} \int_{y}^{2} \int_{0}^{y} x^{2} d z d x d y \\
= & \int_{0}^{2} \int_{0}^{y} \int_{y}^{2} x^{2} d x d z d y \\
= & \int_{0}^{2} \int_{z}^{2} \int_{y}^{2} x^{2} d x d y d z
\end{aligned}
$$

2. (5 points) Evaluate $\int_{0}^{1} \int_{\sqrt{x}}^{x} e^{x / y} d y d x$.

Solution: Again, draw the 2-D region. Note that we are going from $y=\sqrt{x}$ to x, so the region is not oriented the way we learned for Fubini's Theorem. So we should first rewrite

$$
\int_{0}^{1} \int_{\sqrt{x}}^{x} e^{x / y} d y d x=-\int_{0}^{1} \int_{x}^{\sqrt{x}} e^{x / y} d y d x
$$

Now we can draw the region or write the correct inequalities (this would have worked for Fubini the other way as well: $\sqrt{x} \leq y \leq x$ means $x \leq y^{2} \leq x^{2}$ since all quantities are positive), and use Fubini's theorem to get

$$
\int_{0}^{1} \int_{x}^{\sqrt{x}} e^{x / y} d y d x=\int_{0}^{1} \int_{y^{2}}^{y} e^{x / y} d x d y=\left.\int_{0}^{1} y e^{x / y}\right|_{y^{2}} ^{y} d y=\int_{0}^{1} y e-y e^{y} d y=y^{2}(e / 2)-\left.\left(y e^{y}-e^{y}\right)\right|_{0} ^{1}=e / 2-1
$$

So the final answer is $-e / 2+1$.
3. (5 points) Evaluate $\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{1} e^{z^{2} y^{2} \sin (y z)} \cos (x) d z d y d x$.

Solution: Since all limits of integration are scalars, and the function we are integrating can be written as $f(x, y, z)=g(x) h(y, z)$, we can split the integral into

$$
\int_{0}^{\pi} \cos (x) d x \int_{0}^{1} \int_{0}^{1} e^{z^{2} y^{2} \sin (y z)} d z d y
$$

The left integral is zero, so the final answer is zero.
4. (10 points) Bound the integral $\int_{0}^{10} \int_{0}^{10} \int_{0}^{10} \sin \left(x^{3} y^{3} z^{3}\right) d x d y d z$ above and below. What is your opinion of the bounds?
Solution: Since $-1 \leq \sin (x) \leq 1$ for any x, we know

$$
\int_{0}^{10} \int_{0}^{10} \int_{0}^{10}-1 d x d y d z \leq \int_{0}^{10} \int_{0}^{10} \int_{0}^{10} \sin \left(x^{3} y^{3} z^{3}\right) d x d y d z \leq \int_{0}^{10} \int_{0}^{10} \int_{0}^{10} 1 d x d y d z
$$

The leftmost integral is equal to -10^{3} and the rightmost integral is 10^{3}. So

$$
-10^{3} \leq \int_{0}^{10} \int_{0}^{10} \int_{0}^{10} \sin \left(x^{3} y^{3} z^{3}\right) d x d y d z \leq 10^{3}
$$

However, this is a bad approximation since $\sin \left(x^{3} y^{3} z^{3}\right)$ oscillates a lot in any large box. (Unfortunately, basic WolframAlpha times out during the computation of the above integral.)
5. (6 points) Extra Credit: only using triple integrals and changes of variables ${ }^{1}$, show that the volume of the ellipsoid

$$
E=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1\right\}
$$

is equal to $a b c$ times the volume of the unit ball $B=\left\{(u, v, w) \in \mathbb{R}^{3}: u^{2}+v^{2}+w^{2} \leq 1\right\}$.
Solution: The quick solution (but you would need to be very comfortable with change of variables) is let $x=a u, y=b v, z=c w$. Then the region $\left\{x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2} \leq 1\right\}$ changes to the region $\left\{u^{2}+v^{2}+w^{2} \leq 1\right\}$. The volume of the new region is just $4 \pi / 3$. Now, if $x=a u$, thinking of the integral as iterated integrals, $d x=a d u$, and so on. Therefore

$$
\iiint_{E} d x d y d z=\iiint_{B}(a d u)(b d v)(c d w)=a b c \iiint_{B} d u d v d w=a b c \operatorname{Vol}(B)=a b c 4 \pi / 3 .
$$

A slightly longer way that you might be more comfortable with would be to write the limits explicitly and change one variable at a time (obeying the Calculus 2 rules):

$$
\iiint_{E} d x d y d z=\int_{-c}^{c} \int_{-b \sqrt{1-z^{2} / c^{2}}}^{b \sqrt{1-z^{2} / c^{2}}} \int_{-a \sqrt{1-y^{2} / b^{2}-z^{2} / c^{2}}}^{a \sqrt{1-y^{2} / b^{2}-z^{2} / c^{2}}} d x d y d z
$$

Now let $x=a u$ so that $a d u=d x$ and the limits change by $u=x / a$. We get the above integral equals

$$
\int_{-c}^{c} \int_{-b \sqrt{1-z^{2} / c^{2}}}^{b \sqrt{1-z^{2} / c^{2}}} \int_{-\sqrt{1-y^{2} / b^{2}-z^{2} / c^{2}}}^{\sqrt{1-y^{2} / b^{2}-z^{2} / c^{2}}} a d u d y d z=\int_{-c}^{c} \int_{-b \sqrt{1-z^{2} / c^{2}}}^{b \sqrt{1-z^{2} / c^{2}}} 2 a \sqrt{1-y^{2} / b^{2}-z^{2} / c^{2}} d y d z
$$

Change variables again by $y=b v$ to get the above equals

$$
\int_{-c}^{c} \int_{-\sqrt{1-z^{2} / c^{2}}}^{\sqrt{1-z^{2} / c^{2}}} 2 a b \sqrt{1-v^{2}-z^{2} / c^{2}} d v d z
$$

Now let $f(z)=\int_{-b \sqrt{1-z^{2} / c^{2}}}^{b \sqrt{1-z^{2} / c^{2}}} 2 a b \sqrt{1-v^{2}-z^{2} / c^{2}} d v$. The last remaining integral is

$$
\int_{-c}^{c} f(z) d z
$$

which is just a single integral and so it obeys all the change of variables you previously learned. Letting $z=c w$ finishes the problem, after you notice that the integral left is the same as $a b c$ times the volume of the unit ball.

[^0]
[^0]: ${ }^{1}$ The change of variables you use should be from a previous class, not from Chapter 6. Remember that computing an iterated triple integral is just iterating a single integral three times, so all previous results hold for each integral separately.

