
MTH 254H Chapter 2 Quiz February 1st, 2018

1. (5 points) Let f(x, y) = xey−1 + y lnx.

(a) Find ∇f(1, 1).

(b) Use the linearization (tangent plane) to approximate .9e.2+1.2 ln(.9). (The actual value is ≈ .9728.)

Solution:

(a) ∂f
∂x

= ey−1 + y/x. So ∂f
∂x

(1, 1) = 1 + 1 = 2.
∂f
∂y

= xey−1 + lnx. So ∂f
∂y

(1, 1) = 1 + 0 = 1.

(b) f(1, 1) = 1. The tangent plane is given by

L(x, y) = f(1, 1) +
∂f

∂x
(1, 1)(x− 1) +

∂f

∂y
(1, 1)(y − 1) = 1 + 2(x− 1) + (y − 1).

To approximate,

.9e.2 + 1.2 ln .9 = f(.9, 1.2) ≈ L(.9, 1.2) = 1 + 2(.9− 1) + (1.2− 1) = 1− .2 + .2 = 1,

which is pretty close to .9728.

2. (5 points) Let f(x, y) be as above. Use the chain rule to find ∇f(u, v) at (u, v) = (1, 1) if x = u + v
and y = u− v.
Solution: The chain rule says

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
,

∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
.

If (u, v) = (1, 1), then (x, y) = (u+ v, u− v) = (2, 0). We already computed the partial derivatives with
respect to x, y above, so plug in the new point (2, 0) into ∇f to get

∂f

∂x
= e−1 + 0/2 = e−1, and

∂f

∂y
= 2e−1 + ln 2.

Moreover, [
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

]
=

[
1 1
1 −1

]
.

Therefore
∂f

∂u
(1, 1) = e−1 + 2e−1 + ln 2 =

3

e
+ ln 2,

∂f

∂v
(1, 1) = e−1 − (2e−1 + ln 2) = −1

e
− ln 2.
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3. (10 points) (Maybe bonus) Let f : R2 → R be a function. Assume there are two continuous paths
r1 : [−1, 1]→ R2 and r2 : [−1, 1]→ R2 with r1(0) = r2(0) = (0, 0) such that

lim
t→0

f(r1(t)) = A and lim
t→0

f(r2(t)) = B,

where A,B ∈ R.

(a) If f is continuous at (0, 0), prove that A = B.

(b) Note that the above implies: if along two different paths there are two different limits, the limit
lim(x,y)→(0,0) f(x, y) does not exist!

Use this to prove that lim(x,y)→(0,0)
xy2

x2+y4
does not exist by considering the two paths r1(t) = (t, t)

and r2(t) = (t2, t) (this is the same as considering the limit along x = y and along x = y2 as they
might in MTH 234).

Solutions:

(a) An argument without the limit definition, but using stuff we learned in class, could go as follows:
if f is continuous at (0, 0), and r1 is continuous, so is their composition f(r1(t)). Similarly, f(r2(t))
is continuous. By definition of continuity, since r1(0) = r2(0) = (0, 0),

A = lim
t→0

f(r1(t))
continuity of r1

= f(0, 0)
continuity of r2

= lim
t→0

f(r2(t)) = B.

An argument without using this fact would just prove that the composition of continuous functions
is continuous:

Let f : R2 → R and r : [−1, 1]→ R2 be continuous such that r(0) = (0, 0). Let ε > 0. We want to
show there is δ > 0 such that

|t− 0| < δ implies |f(r(t))− f(0, 0)| < ε.

Since f is continuous at (0, 0), there is δ1 such that

‖(x, y)− (0, 0)‖ < δ1 implies |f(x, y)− f(0, 0)| < ε.

Since r is continuous at t = 0, there is δ2 > 0 such that

|t− 0| < δ2 implies ‖r(t)− (0, 0)‖ < δ1.

Therefore, letting δ = δ2, we see that

|t− 0| < δ implies |f(r(t))− f(0, 0)| < ε.

To finish this problem, since f(r(t)) is continuous at t = 0, A = f(0, 0) = B.

(b) Along r1, the limit becomes

lim
t→0

t3

t2 + t4
= lim

t→0

t

1 + t2
= 0.

Along r2, the limit becomes

lim
t→0

t4

t4 + t4
= lim

t→0

t4

2t4
=

1

2
.
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