1. (5 points) Let $f(x, y)=x e^{y-1}+y \ln x$.
(a) Find $\nabla f(1,1)$.
(b) Use the linearization (tangent plane) to approximate $.9 e^{2}+1.2 \ln (.9)$. (The actual value is $\approx .9728$.)

Solution:

(a) $\frac{\partial f}{\partial x}=e^{y-1}+y / x$. So $\frac{\partial f}{\partial x}(1,1)=1+1=2$.
$\frac{\partial f}{\partial y}=x e^{y-1}+\ln x$. So $\frac{\partial f}{\partial y}(1,1)=1+0=1$.
(b) $f(1,1)=1$. The tangent plane is given by

$$
L(x, y)=f(1,1)+\frac{\partial f}{\partial x}(1,1)(x-1)+\frac{\partial f}{\partial y}(1,1)(y-1)=1+2(x-1)+(y-1)
$$

To approximate,

$$
.9 e^{.2}+1.2 \ln .9=f(.9,1.2) \approx L(.9,1.2)=1+2(.9-1)+(1.2-1)=1-.2+.2=1
$$

which is pretty close to .9728 .
2. (5 points) Let $f(x, y)$ be as above. Use the chain rule to find $\nabla f(u, v)$ at $(u, v)=(1,1)$ if $x=u+v$ and $y=u-v$.
Solution: The chain rule says

$$
\begin{aligned}
& \frac{\partial f}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \\
& \frac{\partial f}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

If $(u, v)=(1,1)$, then $(x, y)=(u+v, u-v)=(2,0)$. We already computed the partial derivatives with respect to x, y above, so plug in the new point $(2,0)$ into ∇f to get

$$
\frac{\partial f}{\partial x}=e^{-1}+0 / 2=e^{-1}, \text { and } \frac{\partial f}{\partial y}=2 e^{-1}+\ln 2
$$

Moreover,

$$
\left[\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
$$

Therefore

$$
\begin{gathered}
\frac{\partial f}{\partial u}(1,1)=e^{-1}+2 e^{-1}+\ln 2=\frac{3}{e}+\ln 2 \\
\frac{\partial f}{\partial v}(1,1)=e^{-1}-\left(2 e^{-1}+\ln 2\right)=-\frac{1}{e}-\ln 2
\end{gathered}
$$

3. (10 points) (Maybe bonus) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function. Assume there are two continuous paths $\mathbf{r}_{1}:[-1,1] \rightarrow \mathbb{R}^{2}$ and $\mathbf{r}_{2}:[-1,1] \rightarrow \mathbb{R}^{2}$ with $\mathbf{r}_{1}(0)=\mathbf{r}_{2}(0)=(0,0)$ such that

$$
\lim _{t \rightarrow 0} f\left(\mathbf{r}_{1}(t)\right)=A \text { and } \lim _{t \rightarrow 0} f\left(\mathbf{r}_{2}(t)\right)=B
$$

where $A, B \in \mathbb{R}$.
(a) If f is continuous at $(0,0)$, prove that $A=B$.
(b) Note that the above implies: if along two different paths there are two different limits, the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist!
Use this to prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist by considering the two paths $\mathbf{r}_{1}(t)=(t, t)$ and $\mathbf{r}_{2}(t)=\left(t^{2}, t\right)$ (this is the same as considering the limit along $x=y$ and along $x=y^{2}$ as they might in MTH 234).

Solutions:

(a) An argument without the limit definition, but using stuff we learned in class, could go as follows: if f is continuous at $(0,0)$, and \mathbf{r}_{1} is continuous, so is their composition $f\left(\mathbf{r}_{1}(t)\right)$. Similarly, $f\left(\mathbf{r}_{2}(t)\right)$ is continuous. By definition of continuity, since $\mathbf{r}_{1}(0)=\mathbf{r}_{2}(0)=(0,0)$,

$$
A=\lim _{t \rightarrow 0} f\left(\mathbf{r}_{1}(t)\right) \stackrel{\text { continuity of } \mathbf{r}_{1}}{=} f(0,0) \stackrel{\text { continuity of } \mathbf{r}_{2}}{=} \lim _{t \rightarrow 0} f\left(\mathbf{r}_{2}(t)\right)=B .
$$

An argument without using this fact would just prove that the composition of continuous functions is continuous:
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\mathbf{r}:[-1,1] \rightarrow \mathbb{R}^{2}$ be continuous such that $\mathbf{r}(0)=(0,0)$. Let $\varepsilon>0$. We want to show there is $\delta>0$ such that

$$
|t-0|<\delta \text { implies }|f(\mathbf{r}(t))-f(0,0)|<\varepsilon
$$

Since f is continuous at $(0,0)$, there is δ_{1} such that

$$
\|(x, y)-(0,0)\|<\delta_{1} \text { implies }|f(x, y)-f(0,0)|<\varepsilon .
$$

Since \mathbf{r} is continuous at $t=0$, there is $\delta_{2}>0$ such that

$$
|t-0|<\delta_{2} \text { implies }\|\mathbf{r}(t)-(0,0)\|<\delta_{1} .
$$

Therefore, letting $\delta=\delta_{2}$, we see that

$$
|t-0|<\delta \text { implies }|f(\mathbf{r}(t))-f(0,0)|<\varepsilon
$$

To finish this problem, since $f(\mathbf{r}(t))$ is continuous at $t=0, A=f(0,0)=B$.
(b) Along \mathbf{r}_{1}, the limit becomes

$$
\lim _{t \rightarrow 0} \frac{t^{3}}{t^{2}+t^{4}}=\lim _{t \rightarrow 0} \frac{t}{1+t^{2}}=0 .
$$

Along \mathbf{r}_{2}, the limit becomes

$$
\lim _{t \rightarrow 0} \frac{t^{4}}{t^{4}+t^{4}}=\lim _{t \rightarrow 0} \frac{t^{4}}{2 t^{4}}=\frac{1}{2} .
$$

