- 1. (5 points) Let $f(x, y) = xe^{y-1} + y \ln x$.
 - (a) Find $\nabla f(1,1)$.
 - (b) Use the linearization (tangent plane) to approximate $.9e^{.2} + 1.2\ln(.9)$. (The actual value is $\approx .9728$.)

Solution:

- (a) $\frac{\partial f}{\partial x} = e^{y-1} + y/x$. So $\frac{\partial f}{\partial x}(1,1) = 1+1=2$. $\frac{\partial f}{\partial y} = xe^{y-1} + \ln x$. So $\frac{\partial f}{\partial y}(1,1) = 1+0=1$.
- (b) f(1,1) = 1. The tangent plane is given by

$$L(x,y) = f(1,1) + \frac{\partial f}{\partial x}(1,1)(x-1) + \frac{\partial f}{\partial y}(1,1)(y-1) = 1 + 2(x-1) + (y-1).$$

To approximate,

$$.9e^{2} + 1.2 \ln .9 = f(.9, 1.2) \approx L(.9, 1.2) = 1 + 2(.9 - 1) + (1.2 - 1) = 1 - .2 + .2 = 1,$$

which is pretty close to .9728.

2. (5 points) Let f(x, y) be as above. Use the chain rule to find $\nabla f(u, v)$ at (u, v) = (1, 1) if x = u + vand y = u - v.

Solution: The chain rule says

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial u},$$
$$\frac{\partial f}{\partial v} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial v}.$$

If (u, v) = (1, 1), then (x, y) = (u + v, u - v) = (2, 0). We already computed the partial derivatives with respect to x, y above, so plug in the new point (2, 0) into ∇f to get

$$\frac{\partial f}{\partial x} = e^{-1} + 0/2 = e^{-1}$$
, and $\frac{\partial f}{\partial y} = 2e^{-1} + \ln 2$.

Moreover,

$$\begin{bmatrix} \partial x/\partial u & \partial x/\partial v \\ \partial y/\partial u & \partial y/\partial v \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

Therefore

$$\frac{\partial f}{\partial u}(1,1) = e^{-1} + 2e^{-1} + \ln 2 = \frac{3}{e} + \ln 2,$$
$$\frac{\partial f}{\partial v}(1,1) = e^{-1} - (2e^{-1} + \ln 2) = -\frac{1}{e} - \ln 2.$$

3. (10 points) (Maybe bonus) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function. Assume there are two continuous paths $\mathbf{r}_1 : [-1, 1] \to \mathbb{R}^2$ and $\mathbf{r}_2 : [-1, 1] \to \mathbb{R}^2$ with $\mathbf{r}_1(0) = \mathbf{r}_2(0) = (0, 0)$ such that

$$\lim_{t \to 0} f(\mathbf{r}_1(t)) = A \text{ and } \lim_{t \to 0} f(\mathbf{r}_2(t)) = B,$$

where $A, B \in \mathbb{R}$.

- (a) If f is continuous at (0,0), prove that A = B.
- (b) Note that the above implies: if along two different paths there are two different limits, the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist!

Use this to prove that $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$ does not exist by considering the two paths $\mathbf{r}_1(t) = (t,t)$ and $\mathbf{r}_2(t) = (t^2, t)$ (this is the same as considering the limit along x = y and along $x = y^2$ as they might in MTH 234).

Solutions:

(a) An argument without the limit definition, but using stuff we learned in class, could go as follows: if f is continuous at (0,0), and \mathbf{r}_1 is continuous, so is their composition $f(\mathbf{r}_1(t))$. Similarly, $f(\mathbf{r}_2(t))$ is continuous. By definition of continuity, since $\mathbf{r}_1(0) = \mathbf{r}_2(0) = (0,0)$,

$$A = \lim_{t \to 0} f(\mathbf{r}_1(t)) \stackrel{\text{continuity of } \mathbf{r}_1}{=} f(0,0) \stackrel{\text{continuity of } \mathbf{r}_2}{=} \lim_{t \to 0} f(\mathbf{r}_2(t)) = B.$$

An argument without using this fact would just prove that the composition of continuous functions is continuous:

Let $f : \mathbb{R}^2 \to \mathbb{R}$ and $\mathbf{r} : [-1, 1] \to \mathbb{R}^2$ be continuous such that $\mathbf{r}(0) = (0, 0)$. Let $\varepsilon > 0$. We want to show there is $\delta > 0$ such that

$$|t-0| < \delta$$
 implies $|f(\mathbf{r}(t)) - f(0,0)| < \varepsilon$.

Since f is continuous at (0,0), there is δ_1 such that

$$||(x,y) - (0,0)|| < \delta_1$$
 implies $|f(x,y) - f(0,0)| < \varepsilon$.

Since **r** is continuous at t = 0, there is $\delta_2 > 0$ such that

$$|t-0| < \delta_2$$
 implies $||\mathbf{r}(t) - (0,0)|| < \delta_1$.

Therefore, letting $\delta = \delta_2$, we see that

$$|t-0| < \delta$$
 implies $|f(\mathbf{r}(t)) - f(0,0)| < \varepsilon$.

To finish this problem, since $f(\mathbf{r}(t))$ is continuous at t = 0, A = f(0, 0) = B. (b) Along \mathbf{r}_1 , the limit becomes

$$\lim_{t \to 0} \frac{t^3}{t^2 + t^4} = \lim_{t \to 0} \frac{t}{1 + t^2} = 0.$$

Along \mathbf{r}_2 , the limit becomes

$$\lim_{t \to 0} \frac{t^4}{t^4 + t^4} = \lim_{t \to 0} \frac{t^4}{2t^4} = \frac{1}{2}.$$