
MTH 254H Midterm 1 Solutions February 14th, 2018

1. (20 points) (Parts are unrelated to each other in this question.)

(a) Parametrize the line segment starting at (1, 1, 1) and ending at (2, 1, 3).

One parametrization is given by

r(t) = (1, 1, 1)(1− t) + (2, 1, 3)t for 0 ≤ t ≤ 1.

I didn’t take off points if you forgot the domain of r.

(b) Find the point where the line (t, 1− t, 1− t) intersects the plane 2x− y − z = 0.

Since x(t) = t, y(t) = 1− t, z(t) = 1− t, you should first plug these into the equation of the plane and
solve for t:

2t− (1− t)− (1− t) = 0 =⇒ 4t = 2 =⇒ t = 1/2.

So the point is (1/2, 1/2, 1/2).

(c) Given a C1 function f : Rn → R, what is the direction of greatest increase at a point x0?

The direction of greatest increase is the direction of the gradient. Since direction is a unit vector, the
answer is ∇f(x0)/‖∇f(x0)‖ if ∇f(x0) 6= 0. If it is the zero vector, then we might not be able to say
what the direction of greatest increase is.

(d) Let f(x, y) = yesin(y) + xecos(x). Find
∂4f

∂x(∂y)3
(1, 2).

By properties of differentiable functions (multiplication, composition, addition), f(x, y) is infinitely
differentiable. Therefore we can move around all the partials we want.

∂4f

∂x(∂y)3
=

∂4f

(∂y)3∂x
=

∂3

(∂y)3
(some function of only x) = 0,

since the partial derivative with respect to x of yesin(y) is the zero function.
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2. (20 points)

Let f(x, y) = x3

3
− x+ y2

2
− y. Let D be the closed region the triangle with vertices at (0, 0), (0, 2), and

(2, 2). Find the absolute maximum and minimum of f on D.

Solution: First, check where the gradient is zero inside the region:

∇f = (x2 − 1, y − 1) = (0, 0) at (±1, 1).

The only point inside the region out of these two is (1, 1).
Next, check the boundaries. The triangle has three sides: y = x, 0 ≤ x ≤ 2; x = 0, 0 ≤ y ≤ 2; and

y = 2, 0 ≤ x ≤ 2.

• On y = x,
f(x, x) = x3/3− x+ x2/2− x = g1(x).

Then g′1(x) = x2 + x− 2 = (x+ 2)(x− 1). This gives us the point (1, 1), which we already had above.
(−2,−2) is not inside the region.

• On x = 0,
f(0, y) = y2/2− y = g2(y).

Then g′2(y) = y − 1 = 0 when y = 1. This gives us the point (0, 1).

• On y = 2,
f(x, 2) = x3/3− x+ 2− 2 = x3/3− x = g3(x).

Then g′3(x) = x2 − 1 = (x+ 1)(x− 1), giving us the point (1, 2).

Finally, we have three more points coming from the boundary of these lines, namely (0, 0), (2, 0), and
(2, 2).

Plugging in each of these six points, the absolute minimum is f(1, 1) = −7/6 and the absolute maximum
is f(2, 2) = 2/3.
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3. (20 points) Let f(x, y) = (ex sin(y), ex cos(y)). If x(t) = cos(t) and y(t) = sin(t), using the Chain

Rule, find
df

dt
at t = 0.

Solution: Think of c(t) = (x(t), y(t)) as a column vector. The chain rule tells us

df

dt
(0) = Df(x(0), y(0))c′(0).

First,

Df =

[ ∂
∂x
ex sin(y) ∂

∂y
ex sin(y)

∂
∂x
ex cos(y) ∂

∂y
ex cos(y)

]
=

[
ex sin(y) ex cos(y)
ex cos(y) −ex sin(y)

]
.

Since (x(0), y(0)) = (1, 0), Df evaluated at t = 0 is

Df(1, 0) =

[
0 e
e 0

]
.

Also, c′(0) = (0, 1)T . Therefore,
df

dt
(0) =

[
0 e
e 0

] [
0
1

]
=

[
e
0

]
.
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4. (20 points)

(a) State the Implicit Function Theorem for C1 functions F : Rn+1 → R.

See book.

(b) State the Inverse Function Theorem.

See book.

(c) Prove the Inverse Function Theorem using Implicit Function Theorem.

Solution: Assume that the system 
y1 = f1(x1, . . . , xn)
... =

...

yn = fn(x1, . . . , xn)

is such that

J(f)(x0) =


∂f1
∂x1
· · · ∂f1

∂xn
...
. . .

...
∂fn
∂x1
· · · ∂fn

∂xn

 (x0)

is invertible. Let Fi(y, x) = fi(x) − yi for 1 ≤ i ≤ n. Then the function F : R2n → Rn defined by
F (y, x) = (F1(y, x), . . . , Fn(y, x)) = 0 at (y0, x0) (where y0 = (f1(x0), . . . , fn(x0))). Moreover, we have

Dx(F )(y0, x0) =


∂F1

∂x1
· · · ∂F1

∂xn
...
. . .

...
∂Fn

∂x1
· · · ∂Fn

∂xn

 (y0, x0) =


∂f1
∂x1
· · · ∂f1

∂xn
...
. . .

...
∂fn
∂x1
· · · ∂fn

∂xn

 (x0),

and therefore Dx(F )(y0, x0) is invertible. So the (general) Implicit Function Theorem guarantees
that xi = gi(y1, . . . , yn) in some open set containing (y0, x0) for 1 ≤ i ≤ n and gi are continuously
differentiable.
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5. (20 points)

(a) A norm has 4 properties (including triangle inequality). Define what a norm on R2 is.

A norm on R2 is any function ‖ · ‖ : R2 → R satisfying

(i) ‖(x, y)‖ ≥ 0 for all (x, y) ∈ R2;

(ii) ‖(x, y)‖ = 0 if and only if (x, y) = (0, 0);

(iii) For α ∈ R, ‖α(x, y)‖ = |α|‖(x, y)‖;
(iv) ‖(x1, y1) + (x2, y2)‖ ≤ ‖(x1, y1)‖+ ‖(x2, y2)‖.

(b) Prove that the function ‖ · ‖1 : R2 → R defined by

‖(x, y)‖1 = |x|+ |y|

is a norm on R2. This is called the `1 norm on R2.

(i) ‖(x, y)‖1 = |x|+ |y| ≥ 0 for all (x, y) ∈ R2 since absolute value is always nonnegative;

(ii) ‖(x, y)‖1 = 0 if and only if |x|+ |y| = 0, which only happens when x = 0 and y = 0 since absolute
value is zero if and only if the input is zero;

(iii) For α ∈ R,

‖α(x, y)‖1 = ‖(αx, αy)‖1 = |αx|+ |αy| = |α||x|+ |α||y| = |α|(|x|+ |y|) = |α|‖(x, y)‖1;

(iv)
‖(x1, y1) + (x2, y2)‖1 = ‖(x1 + x2, y1 + y2)‖1 = |x1 + x2|+ |y1 + y2|

≤ |x1|+ |x2|+ |y1|+ |y2| = (|x1|+ |y1|) + (|x2|+ |y2|) = ‖(x1, y1)‖1 + ‖(x2, y2)‖1.

(c) Let f : R2 → R be defined by

f(x, y) =

{
x+ y if x or y are rational,

x− y if x and y are irrational.

Prove that f is continuous at (0, 0) with respect to the `1 norm (that is, in the definition of continuity,
show that ‖(x, y)− (0, 0)‖1 < δ implies ...).

Note that
|x+ y| ≤ |x|+ |y| = ‖(x, y)‖1 and |x− y| ≤ |x|+ |y| = ‖(x, y)‖1.

Let ε > 0. Let δ = ε. By the above computation, no matter what (x, y) ∈ R2 is,

|f(x, y)− f(0, 0)| ≤ |x|+ |y| = ‖(x, y)‖1.

Therefore, if ‖(x, y)‖1 < δ then |f(x, y)− f(0, 0)| < δ = ε.
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Bonus (10 points) Let Q be the set of rational numbers. Given a prime number p, any nonzero rational

number x can be expressed as x = pa · n
d

for a unique integer a, where n and d are integers not divisible by
p.

For a prime number p, define | · |p : Q→ Q by |x|p = p−a, if x is as above, and define |0|p = 0.

(a) Prove | · |p is a norm on Q (is this even a well-defined function?).

This is well-defined because the expression for rational numbers given above is unique. As in the
previous question, we check the properties of a norm:

(i), (ii) |x|p = p−a where a is uniquely given if x is rational and nonzero. p−a is strictly positive for any
integer a. If x = 0, then by definition |0|p = 0.

(iii) Since | · |p is only defined for rationals, let α ∈ Q. α can be uniquely expressed as pbm/k. Let
x = pan/d as above. Then

|αx|p = |pa+bmn/(kd)|p = p−a−b = p−ap−b = |α|p|x|p.

Above, it’s easy to see that mn/(kd) is such that the numerator and denominator both don’t
have any powers of p, since p is prime. (Sorry, this part of inner product was vague. The absolute
value we have to use here is | · |p itself.)

(iv) Let x = pan/d and y = pbm/k, where n, d,m, k are not divisible by p. Assume for simplicity that
a ≤ b. Then,

x+ y = pa(n/d+ pb−am/k = pa
nk + pb−amd

dk
.

Since p is a prime that doesn’t divide d or k, it does not divide dk. Let c be the largest integer
such that nk + pb−amd = pcl where l is not divisible by p. Then

|x+ y|p = |pa+c l

dk
| = p−a−c ≤ p−a ≤ max{p−a, p−b} = max{|x|p, |y|p} ≤ |x|p + |y|p.

(b) Show that | · |p is non-archimedean with respect to distance, that is,

|x+ y|p ≤ max{|x|p, |y|p}.

It has been observed that on quantum scales, distances behave this way. (What does this say about
triangles in such spaces?)

See above.

(c) Compute |n/8|2 for 1 ≤ n ≤ 8 and verify the non-archimedean property for some case.

|1/8|2
|2/8|2
|3/8|2
|4/8|2
|5/8|2
|6/8|2
|7/8|2
|8/8|2


=



|1/8|2
|1/4|2
|3/8|2
|1/2|2
|5/8|2
|3/4|2
|7/8|2
|1|2


=



|2−3|2
|2−2|2
|2−33|2
|2−1|2
|2−35|2
|2−23|2
|2−37|2
|1|2


=



23

22

23

2
23

22

23

1


=



8
4
8
2
8
4
8
1


.
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Notice that
4 = |6/8|p = |4/8 + 2/8|p ≤ max{|1/2|p, |1/4|p} = max{2, 4} = 4.

Triangles in such spaces have the following property: all triangles are isosceles. Let |x|p be the length
of one side and |y|p be the length of another side (and therefore the third side has length |x+ y|p).
If |x|p = |y|p then the triangle is isosceles and we are done. Otherwise, we can assume that |x|p > |y|p.
In this case,

|x+ y|p ≤ max{|x|p, |y|p} = |x|p.

But also by the triangle inequality,

|x|p = |x+ y − y|p ≤ max{|x+ y|p, |y|p}.

Since |x|p > |y|p, the maximum above must be |x+ y|p. So |x|p ≤ |x+ y|p.
We just showed that |x+ y|p ≤ |x|p ≤ |x+ y|p and therefore |x|p = |x+ y|p.
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