1. (20 points) (Parts are unrelated to each other in this question.)
(a) Parametrize the line segment starting at $(1,1,1)$ and ending at $(2,1,3)$.

One parametrization is given by

$$
\mathbf{r}(t)=(1,1,1)(1-t)+(2,1,3) t \text { for } 0 \leq t \leq 1
$$

I didn't take off points if you forgot the domain of \mathbf{r}.
(b) Find the point where the line $(t, 1-t, 1-t)$ intersects the plane $2 x-y-z=0$.

Since $x(t)=t, y(t)=1-t, z(t)=1-t$, you should first plug these into the equation of the plane and solve for t :

$$
2 t-(1-t)-(1-t)=0 \Longrightarrow 4 t=2 \Longrightarrow t=1 / 2
$$

So the point is $(1 / 2,1 / 2,1 / 2)$.
(c) Given a C^{1} function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, what is the direction of greatest increase at a point \mathbf{x}_{0} ?

The direction of greatest increase is the direction of the gradient. Since direction is a unit vector, the answer is $\nabla f\left(x_{0}\right) /\left\|\nabla f\left(x_{0}\right)\right\|$ if $\nabla f\left(x_{0}\right) \neq \mathbf{0}$. If it is the zero vector, then we might not be able to say what the direction of greatest increase is.
(d) Let $f(x, y)=y e^{\sin (y)}+x e^{\cos (x)}$. Find $\frac{\partial^{4} f}{\partial x(\partial y)^{3}}(1,2)$.

By properties of differentiable functions (multiplication, composition, addition), $f(x, y)$ is infinitely differentiable. Therefore we can move around all the partials we want.

$$
\frac{\partial^{4} f}{\partial x(\partial y)^{3}}=\frac{\partial^{4} f}{(\partial y)^{3} \partial x}=\frac{\partial^{3}}{(\partial y)^{3}}(\text { some function of only } x)=0
$$

since the partial derivative with respect to x of $y e^{\sin (y)}$ is the zero function.

2. (20 points)

Let $f(x, y)=\frac{x^{3}}{3}-x+\frac{y^{2}}{2}-y$. Let D be the closed region the triangle with vertices at $(0,0),(0,2)$, and $(2,2)$. Find the absolute maximum and minimum of f on D.

Solution: First, check where the gradient is zero inside the region:

$$
\nabla f=\left(x^{2}-1, y-1\right)=(0,0) \text { at }(\pm 1,1)
$$

The only point inside the region out of these two is $(1,1)$.
Next, check the boundaries. The triangle has three sides: $y=x, 0 \leq x \leq 2 ; x=0,0 \leq y \leq 2$; and $y=2,0 \leq x \leq 2$.

- On $y=x$,

$$
f(x, x)=x^{3} / 3-x+x^{2} / 2-x=g_{1}(x)
$$

Then $g_{1}^{\prime}(x)=x^{2}+x-2=(x+2)(x-1)$. This gives us the point $(1,1)$, which we already had above. $(-2,-2)$ is not inside the region.

- On $x=0$,

$$
f(0, y)=y^{2} / 2-y=g_{2}(y) .
$$

Then $g_{2}^{\prime}(y)=y-1=0$ when $y=1$. This gives us the point $(0,1)$.

- On $y=2$,

$$
f(x, 2)=x^{3} / 3-x+2-2=x^{3} / 3-x=g_{3}(x) .
$$

Then $g_{3}^{\prime}(x)=x^{2}-1=(x+1)(x-1)$, giving us the point $(1,2)$.
Finally, we have three more points coming from the boundary of these lines, namely $(0,0),(2,0)$, and $(2,2)$.

Plugging in each of these six points, the absolute minimum is $f(1,1)=-7 / 6$ and the absolute maximum is $f(2,2)=2 / 3$.
3. (20 points) Let $f(x, y)=\left(e^{x} \sin (y), e^{x} \cos (y)\right)$. If $x(t)=\cos (t)$ and $y(t)=\sin (t)$, using the Chain Rule, find $\frac{d f}{d t}$ at $t=0$.

Solution: Think of $\mathbf{c}(t)=(x(t), y(t))$ as a column vector. The chain rule tells us

$$
\frac{d f}{d t}(0)=D f(x(0), y(0)) \mathbf{c}^{\prime}(0)
$$

First,

$$
D f=\left[\begin{array}{cc}
\frac{\partial}{\partial x} e^{x} \sin (y) & \frac{\partial}{\partial y} e^{x} \sin (y) \\
\frac{\partial}{\partial x} e^{x} \cos (y) & \frac{\partial}{\partial y} e^{x} \cos (y)
\end{array}\right]=\left[\begin{array}{cc}
e^{x} \sin (y) & e^{x} \cos (y) \\
e^{x} \cos (y) & -e^{x} \sin (y)
\end{array}\right]
$$

Since $(x(0), y(0))=(1,0), D f$ evaluated at $t=0$ is

$$
D f(1,0)=\left[\begin{array}{ll}
0 & e \\
e & 0
\end{array}\right]
$$

Also, $\mathbf{c}^{\prime}(0)=(0,1)^{T}$. Therefore,

$$
\frac{d f}{d t}(0)=\left[\begin{array}{ll}
0 & e \\
e & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
e \\
0
\end{array}\right]
$$

4. (20 points)

(a) State the Implicit Function Theorem for C^{1} functions $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$.

See book.
(b) State the Inverse Function Theorem.

See book.
(c) Prove the Inverse Function Theorem using Implicit Function Theorem.

Solution: Assume that the system

$$
\left\{\begin{array}{cl}
y_{1} & =f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots & = \\
\vdots \\
y_{n} & =f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right.
$$

is such that

$$
J(f)\left(x_{0}\right)=\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}} \cdots \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots \ddots \\
\frac{\partial f_{n}}{\partial x_{1}} \cdots \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]\left(x_{0}\right)
$$

is invertible. Let $F_{i}(y, x)=f_{i}(x)-y_{i}$ for $1 \leq i \leq n$. Then the function $F: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$ defined by $F(y, x)=\left(F_{1}(y, x), \ldots, F_{n}(y, x)\right)=0$ at $\left(y_{0}, x_{0}\right)$ (where $\left.y_{0}=\left(f_{1}\left(x_{0}\right), \ldots, f_{n}\left(x_{0}\right)\right)\right)$. Moreover, we have

$$
D_{x}(F)\left(y_{0}, x_{0}\right)=\left[\begin{array}{c}
\frac{\partial F_{1}}{\partial x_{1}} \cdots \frac{\partial F_{1}}{\partial x_{n}} \\
\vdots \ddots \\
\frac{\partial F_{n}}{\partial x_{1}} \cdots \frac{\partial F_{n}}{\partial x_{n}}
\end{array}\right]\left(y_{0}, x_{0}\right)=\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}} \cdots \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots \ddots \\
\frac{\partial f_{n}}{\partial x_{1}} \cdots \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]\left(x_{0}\right),
$$

and therefore $D_{x}(F)\left(y_{0}, x_{0}\right)$ is invertible. So the (general) Implicit Function Theorem guarantees that $x_{i}=g_{i}\left(y_{1}, \ldots, y_{n}\right)$ in some open set containing $\left(y_{0}, x_{0}\right)$ for $1 \leq i \leq n$ and g_{i} are continuously differentiable.

5. (20 points)

(a) A norm has 4 properties (including triangle inequality). Define what a norm on \mathbb{R}^{2} is.

A norm on \mathbb{R}^{2} is any function $\|\cdot\|: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying
(i) $\|(x, y)\| \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$;
(ii) $\|(x, y)\|=0$ if and only if $(x, y)=(0,0)$;
(iii) For $\alpha \in \mathbb{R},\|\alpha(x, y)\|=|\alpha|\|(x, y)\|$;
(iv) $\left\|\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right\| \leq\left\|\left(x_{1}, y_{1}\right)\right\|+\left\|\left(x_{2}, y_{2}\right)\right\|$.
(b) Prove that the function $\|\cdot\|_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
\|(x, y)\|_{1}=|x|+|y|
$$

is a norm on \mathbb{R}^{2}. This is called the ℓ_{1} norm on \mathbb{R}^{2}.
(i) $\|(x, y)\|_{1}=|x|+|y| \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$ since absolute value is always nonnegative;
(ii) $\|(x, y)\|_{1}=0$ if and only if $|x|+|y|=0$, which only happens when $x=0$ and $y=0$ since absolute value is zero if and only if the input is zero;
(iii) For $\alpha \in \mathbb{R}$,

$$
\|\alpha(x, y)\|_{1}=\|(\alpha x, \alpha y)\|_{1}=|\alpha x|+|\alpha y|=|\alpha||x|+|\alpha||y|=|\alpha|(|x|+|y|)=|\alpha|\|(x, y)\|_{1} ;
$$

$$
\begin{gather*}
\left\|\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right\|_{1}=\left\|\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right\|_{1}=\left|x_{1}+x_{2}\right|+\left|y_{1}+y_{2}\right| \tag{iv}\\
\leq\left|x_{1}\right|+\left|x_{2}\right|+\left|y_{1}\right|+\left|y_{2}\right|=\left(\left|x_{1}\right|+\left|y_{1}\right|\right)+\left(\left|x_{2}\right|+\left|y_{2}\right|\right)=\left\|\left(x_{1}, y_{1}\right)\right\|_{1}+\left\|\left(x_{2}, y_{2}\right)\right\|_{1} .
\end{gather*}
$$

(c) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{l}
x+y \text { if } x \text { or } y \text { are rational } \\
x-y \text { if } x \text { and } y \text { are irrational. }
\end{array}\right.
$$

Prove that f is continuous at $(0,0)$ with respect to the ℓ_{1} norm (that is, in the definition of continuity, show that $\|(x, y)-(0,0)\|_{1}<\delta$ implies ...).
Note that

$$
|x+y| \leq|x|+|y|=\|(x, y)\|_{1} \text { and }|x-y| \leq|x|+|y|=\|(x, y)\|_{1} .
$$

Let $\varepsilon>0$. Let $\delta=\varepsilon$. By the above computation, no matter what $(x, y) \in \mathbb{R}^{2}$ is,

$$
|f(x, y)-f(0,0)| \leq|x|+|y|=\|(x, y)\|_{1} .
$$

Therefore, if $\|(x, y)\|_{1}<\delta$ then $|f(x, y)-f(0,0)|<\delta=\varepsilon$.

Bonus (10 points) Let \mathbb{Q} be the set of rational numbers. Given a prime number p, any nonzero rational number x can be expressed as $x=p^{a} \cdot \frac{n}{d}$ for a unique integer a, where n and d are integers not divisible by p.

For a prime number p, define $|\cdot|_{p}: \mathbb{Q} \rightarrow \mathbb{Q}$ by $|x|_{p}=p^{-a}$, if x is as above, and define $|0|_{p}=0$.
(a) Prove $|\cdot|_{p}$ is a norm on \mathbb{Q} (is this even a well-defined function?).

This is well-defined because the expression for rational numbers given above is unique. As in the previous question, we check the properties of a norm:
(i), (ii) $|x|_{p}=p^{-a}$ where a is uniquely given if x is rational and nonzero. p^{-a} is strictly positive for any integer a. If $x=0$, then by definition $|0|_{p}=0$.
(iii) Since $|\cdot|_{p}$ is only defined for rationals, let $\alpha \in \mathbb{Q}$. α can be uniquely expressed as $p^{b} m / k$. Let $x=p^{a} n / d$ as above. Then

$$
|\alpha x|_{p}=\left|p^{a+b} m n /(k d)\right|_{p}=p^{-a-b}=p^{-a} p^{-b}=|\alpha|_{p}|x|_{p} .
$$

Above, it's easy to see that $m n /(k d)$ is such that the numerator and denominator both don't have any powers of p, since p is prime. (Sorry, this part of inner product was vague. The absolute value we have to use here is $|\cdot|_{p}$ itself.)
(iv) Let $x=p^{a} n / d$ and $y=p^{b} m / k$, where n, d, m, k are not divisible by p. Assume for simplicity that $a \leq b$. Then,

$$
x+y=p^{a}\left(n / d+p^{b-a} m / k=p^{a} \frac{n k+p^{b-a} m d}{d k} .\right.
$$

Since p is a prime that doesn't divide d or k, it does not divide $d k$. Let c be the largest integer such that $n k+p^{b-a} m d=p^{c} l$ where l is not divisible by p. Then

$$
|x+y|_{p}=\left|p^{a+c} \frac{l}{d k}\right|=p^{-a-c} \leq p^{-a} \leq \max \left\{p^{-a}, p^{-b}\right\}=\max \left\{|x|_{p},|y|_{p}\right\} \leq|x|_{p}+|y|_{p} .
$$

(b) Show that $|\cdot|_{p}$ is non-archimedean with respect to distance, that is,

$$
|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\} .
$$

It has been observed that on quantum scales, distances behave this way. (What does this say about triangles in such spaces?)

See above.
(c) Compute $|n / 8|_{2}$ for $1 \leq n \leq 8$ and verify the non-archimedean property for some case.

$$
\left[\begin{array}{l}
|1 / 8|_{2} \\
|2 / 8|_{2} \\
|3 / 8|_{2} \\
|4 / 8|_{2} \\
|5 / 8|_{2} \\
|6 / 8|_{2} \\
|7 / 8|_{2} \\
|8 / 8|_{2}
\end{array}\right]=\left[\begin{array}{c}
|1 / 8|_{2} \\
|1 / 4|_{2} \\
|3 / 8|_{2} \\
|1 / 2|_{2} \\
|5 / 8|_{2} \\
|3 / 4|_{2} \\
|7 / 8|_{2} \\
|1|_{2}
\end{array}\right]=\left[\begin{array}{c}
\left|2^{-3}\right|_{2} \\
\left|2^{-2}\right|_{2} \\
\left|2^{-3} 3\right|_{2} \\
\left|2^{-1}\right|_{2} \\
\left|2^{-3} 5\right|_{2} \\
\left|2^{-2} 3\right|_{2} \\
\left|2^{-3} 7\right|_{2} \\
|1|_{2}
\end{array}\right]=\left[\begin{array}{c}
2^{3} \\
2^{2} \\
2^{3} \\
2 \\
2^{3} \\
2^{2} \\
2^{3} \\
1
\end{array}\right]=\left[\begin{array}{l}
8 \\
4 \\
8 \\
2 \\
8 \\
4 \\
8 \\
1
\end{array}\right] .
$$

Notice that

$$
4=|6 / 8|_{p}=|4 / 8+2 / 8|_{p} \leq \max \left\{|1 / 2|_{p},|1 / 4|_{p}\right\}=\max \{2,4\}=4
$$

Triangles in such spaces have the following property: all triangles are isosceles. Let $|x|_{p}$ be the length of one side and $|y|_{p}$ be the length of another side (and therefore the third side has length $|x+y|_{p}$). If $|x|_{p}=|y|_{p}$ then the triangle is isosceles and we are done. Otherwise, we can assume that $|x|_{p}>|y|_{p}$. In this case,

$$
|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}=|x|_{p}
$$

But also by the triangle inequality,

$$
|x|_{p}=|x+y-y|_{p} \leq \max \left\{|x+y|_{p},|y|_{p}\right\} .
$$

Since $|x|_{p}>|y|_{p}$, the maximum above must be $|x+y|_{p}$. So $|x|_{p} \leq|x+y|_{p}$.
We just showed that $|x+y|_{p} \leq|x|_{p} \leq|x+y|_{p}$ and therefore $|x|_{p}=|x+y|_{p}$.

