Homework 8

The following are due on Monday, March 12:

5.2 # 1, 2, 3, 14, 17.

(Hint for 17: do the inner integral first, letting $y = x \tan(\theta)$. You will need to be comfortable with the next section, because the inner integral will have a function of x as a limit. After simplification, you should be integrating $\sin(2 \arctan(1/x))/2x$. Use the double angle formula $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$.)

 $\S5.3 \# 4, 15, 18.$

 $\S5.4 \# 4, 5, 6, 9, 11$. Extra credit: 18.

Extra Credit: Using the strategy of the hint in #18 from 5.4, evaluate $\int_0^\infty e^{-x^2} dx$, substituting y = tx after using the hint. Find a constant c such that $\int_{-\infty}^\infty e^{-cx^2} dx = 1.^1$

¹For any c, μ , the function $e^{-c(x-\mu)^2}$ is a normal distribution (also called a Gaussian) with mean μ and variance 1/2c.