Homework 8

The following are due on Monday, March 12:
§5.2 \# 1, 2, 3, 14, 17.
(Hint for 17: do the inner integral first, letting $y=x \tan (\theta)$. You will need to be comfortable with the next section, because the inner integral will have a function of x as a limit. After simplification, you should be integrating $\sin (2 \arctan (1 / x)) / 2 x$. Use the double angle formula $\sin (2 \theta)=$ $2 \sin (\theta) \cos (\theta)$.)
$\S 5.3 \# 4,15,18$.
$\S 5.4 \# 4,5,6,9,11$. Extra credit: 18.
Extra Credit: Using the strategy of the hint in \#18 from 5.4, evaluate $\int_{0}^{\infty} e^{-x^{2}} d x$, substituting $y=t x$ after using the hint. Find a constant c such that $\int_{-\infty}^{\infty} e^{-c x^{2}} d x=1 .{ }^{1}$

[^0]
[^0]: ${ }^{1}$ For any c, μ, the function $e^{-c(x-\mu)^{2}}$ is a normal distribution (also called a Gaussian) with mean μ and variance $1 / 2 c$.

