Homework 7

The following are due on Monday, February 26:
§4.3 \# 1, 9, 10, 13, 21.
§4.4 \# 9, 10, 13, 14, 23
$\S 5.1 \# 1,5,7,8,13$.

Extra Credit (recommended):

$\S 4.2 \# 20,21(\mathrm{c}), 23(\mathrm{a})$. Use the product rule for cross product: $(c(t) \times$ $d(t))^{\prime}=c^{\prime}(t) \times d(t)+c(t) \times d^{\prime}(t)$. For 23(a) use the formula for $d \mathbf{B} / d t$ given to you in 21.

More extra credit: Given a nowhere zero vector field $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, consider

$$
F \cdot(\nabla \times F)
$$

Can you find an example for which this expression is not identically zero?
Prove the following: $F \cdot(\nabla \times F)=0$ if there is some continuously differentiable nowhere zero function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\nabla \times(g F)=\mathbf{0}$. (By a Theorem from class, in other words, if $g F$ is the gradient of some function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$. $)^{1}$

[^0]
[^0]: ${ }^{1}$ The converse is also true, but much harder to prove. This question is motivated by the following: many students remember $\nabla \cdot \nabla \times F=0$ by using the geometric interaction of dot and cross product of vectors $u \cdot u \times v=0=v \cdot u \times v$, since $u \times v$ is orthogonal to u and orthogonal to v. For any C^{2} vector field F on \mathbb{R}^{3} it's true that $\nabla \cdot \nabla \times F=0$, but what about $F \cdot \nabla \times F$? As we can see from this exercise, there is a nice geometric property of F that makes this happen: this is true whenever F can be rescaled to be the gradient of some function.

