Homework 4

The following are due on Monday, February 5:
$\S 2.5 \# 2(\mathrm{e})$ and (f), 3 (b) and (c), 5, 11,
Chain Rule: Assume $F(x, y, z)=0$ is a level set of $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Note that this implicitly defines y as a function of x and z (if we move x, z a little bit, we have to compensate with y to keep F equal to 0 , unless F is already identically zero). Using the chain rule, prove that

$$
\frac{\partial y}{\partial x}=-\frac{\partial F / \partial x}{\partial F / \partial y}
$$

Similarly,

$$
\frac{\partial x}{\partial z}=-\frac{\partial F / \partial z}{\partial F / \partial x} \text { and } \frac{\partial z}{\partial y}=-\frac{\partial F / \partial y}{\partial F / \partial z}
$$

You can look at the hint to Leibniz's Rule problem below for a little extra help. Use the above to do exercise $\# 20$. Note that you can't cancel partials in higher dimensions, and this is the closest we can get to doing that. \#30.
Leibniz's Rule: Prove Leibniz's rule using the chain rule: if $a(x), b(x)$, and $f(x, y)$ are differentiable, then

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=f(x, b(x)) b^{\prime}(x)-f(x, a(x)) a^{\prime}(x)+\int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x, t) d t
$$

Hint: let $g(y, z)=\int_{0}^{y} f(z, t) d t$. Letting $y(x)=b(x)$ and $z(x)=x$, the chain rule tells us

$$
\frac{\partial g}{\partial x}(b(x), x)=\frac{\partial g}{\partial y} \frac{d y}{d x}(b(x), x)+\frac{\partial g}{\partial z} \frac{d z}{d x}(b(x), x)=\frac{\partial g}{\partial y} \frac{d y}{d x}(b(x), x)+\frac{\partial g}{\partial z}(b(x), x) .
$$

Note that $\int_{a(x)}^{b(x)} f(x, t) d t=g(b(x), x)-g(a(x), x)$. Use the fundamental theorem of calculus for $\partial g / \partial b$ and $\partial g / \partial a$.
Assume you are allowed to do $\partial / \partial z \int_{0}^{y} f(z, t) d t=\int_{0}^{y}(\partial f / \partial z)(z, t) d t$.
§2.6 \#22, 25, 32.
$\S 3.1 \# 13,15,17$ (this is a proof, so use Theorem 1 carefully), 25, 26, 32.
$\S 3.2 \# 2,5,7$.

