Homework 3

The following are due on Monday, January 29:

§2.2 #25 (you are allowed to use facts from Calc 1, such as $\lim_{x\to 0} \frac{\sin x}{x} = 1...$ to actually prove this part, you would need to consider Taylor series),

#33,

Bonus Problem: An *n*-variable function $f: U \to \mathbb{R}$ is called *homogeneous of degree d* if $f(\lambda \mathbf{x}) = \lambda^d f(\mathbf{x})$ for all $\lambda \in \mathbb{R}$, all $\mathbf{x} \in U \subseteq \mathbb{R}^n$. (5 points) If f is defined everywhere, what can you say about $\lim_{\mathbf{x}\to\mathbf{0}} f(\mathbf{x})$ (answer may depend on d). (5 points) What happens when d = 0? Please give examples.

 $\S2.3 \ \#1, 5, 8, 10, 16, 22, 25, 27.$

 $\S2.4 \#6, 8, 23, 25.$