Homework 12

The following are due on Monday, April 9:
$\S 7.3 \# 8,20$, extra credit: 24 . Also (not extra credit):
A Given a continuously differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, prove that $(u, v, f(u, v))$ is a regular surface.
B Find a parametrization of $x^{2}-y^{2}-z^{2}=1$ (without square roots). Is it regular?
C Definition: A ruled surface is one that can be parametrized by $r(u, v)=$ $\boldsymbol{\alpha}(u)+v \boldsymbol{\beta}(u)$, where $\boldsymbol{\alpha}:[a, b] \rightarrow \mathbb{R}^{3}$ and $\boldsymbol{\beta}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
Question: Describe what a ruled surface is geometrically. Next, find $y(u, v)$ such that the parametrization

$$
\mathbf{r}(u, v)=(\cos (u)-v \sin (u), y(u, v), v)
$$

parametrizes $x^{2}+y^{2}-z^{2}=1$ and proves it is a ruled surface.
$\S 7.4 \# 5,9,23$, extra credit: 18.

