MTH 370, Fall 2009
Solutions to Homework 12

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic
and function evaluations) and show your work.

1. Show that the two-species competition model
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has no limit-cycle solutions in the positive quadrant (i.e., when z > 0, y > 0). [Hint: Set h(z,y) = %y

and use Dulac’s negative criterion.]
Solution: Notice that
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Thus by Dulac’s negative criterion there cannot be any limit cycle solutions in the positive quadrant.

2. Consider the following nondimensional model from the last homework:
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Assuming that 0 < ¢ < d, argue that this system undergoes a Hopf bifurcation when d = 1.

Solution: Recall that the positive equilibrium is
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that the Jacobian at this equilibrium is

2d 1 (C 4 d)2
J(u*, v*) = | ctd ,
( ) cidd —(c+d)?

and that the trace and determinant of this Jacobian are
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tr(J) = —1—(c+d)3?= —(c+d)?, det(J) = (c+d)*

If ¢ <« d then
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and the eigenvalues of the Jacobian are approximately
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Therefore, there is the possibility of a Hopf bifurcation at d? ~ 1 (i.e., d ~ 1) since in this case the
discriminant Ay is negative and the real parts of AL are approximately zero. We expect to see limit
cycles when d < 1 since this is when the real parts of AL are positive.
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