MTH 370, Fall 2009
Solutions to Homework 11

Instructions: Do these calculations by hand (you may use a computer or calculator for simple arithmetic
and function evaluations) and show your work.

1. Consider the following reactions:
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(a) Write down the mass action equations for these reactions, treating the concentrations of A and
B as positive constants.

(b) Show that, by making the change of variables
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the mass action equations of part (a) become
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where ¢ and d are positive constants.

(¢) Show that the system (1) has exactly one equilibrium, that this equilibrium is positive, and that
it is repelling if and only if
2d > (c+d)(1 + (c +d)?). (2)

(d) Assuming that the inequality (2) holds, show that the region D bounded by the four lines
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is a trapping region for the solutions of (1).

(e) Conclude that the region D contains a limit cycle when the inequality (2) holds.

Solutions:
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(¢) The u- and v-nullclines are, respectively,
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These intersect only at
d
w=c+d, v'= ,
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which is positive. The Jacobian of (1) is

and so
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Note that det(J) > 0, and so (u*,v*) is repelling if and only if tr(J) > 0, which implies (2).
Let n be the inward normal vector to the region D. Hence
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If the dot product of a solution’s tangent vector,

¢ —u+ u?v
flu) = 5000

at a point on the boundary of D with this inward normal vector is > 0, then the solution does
not leave the region D transverse to the boundary at that point. We check

onu=c: n-f(c,v)=uv?v>0 (whenv>0)
onv=0: n-f(u,0)=d>0
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onv= n-f(u,d/c)zd(c—z—l)zo (when u > ¢)
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Note that each of the above conditions holds on the boundary, and so D is a trapping region.

We have just shown that D is a trapping region. It is not hard to see that D contains (u*, v*), so
when this equilbrium is repelling, it follows from the Poincaré-Bendixson theorem that D must
contain a limit cycle.



