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Example lon Channel Kinetics

lon channel with two identical subunits

e Each subunit either open or closed
e channel has 3 states: Sp, S1, S2 (i = # open subunits)
e Subunits open, close randomly at rates o, 3
o If X(t) € {So0, 51,52} denotes channel state at time t > 0, then X is

a jump process

2 «
So =55
16 203
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Example lon Channel Kinetics

Master equation for jump process
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o Let p(t) = (po(t), p1(t), p2(t))" be prob. dist. for X(t)
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Example lon Channel Kinetics

Master equation for jump process
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o Let p(t) = (po(t), p1(t), p2(t))" be prob. dist. for X(t)
o pi(t) = Prob{X(t) = S}
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Example lon Channel Kinetics

Master equation for jump process

2 @
So =5 "%
g 23

o Let p(t) = (po(t), p1(t), p2(t))" be prob. dist. for X(t)
o pi(t) = Prob{X(t) = S}
e From state diagram we derive master equation for p

dp —2a B 0 Po
S =Ap=|2 —a-§ 25| |pm
! 0 a  —28] |p
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Invariant manifolds of master equation

dp —2a B 0 Po
AP = 20 —a—F 26| ip
0 a —203] |p2

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 4 /35



Invariant manifolds of master equation

dp —2a B 0 Po
AP = 20 —a—F 26| ip
0 a —203] |p2

© column sums equal zero = H, = {p € R® | 17p = r} is invariant

d(17p)

— =(1TAp=0 (17 =(1,1,1))
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© column sums equal zero = H, = {p € R® | 17p = r} is invariant

d(17p)

— =(1TAp=0 (17 =(1,1,1))

@® off-diagonal entries nonnegative = K = {p € R® | p > 0} is invariant

dpi

== (Ap)i >0 if pi =0
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Invariant manifolds of master equation

dp —2a B 0 Po
AP = 20 —a—F 26| ip
0 a —203] |p2

© column sums equal zero = H, = {p € R® | 17p = r} is invariant

d(17p)
dt

=(1TAp=0 (17 =(1,1,1))

@® off-diagonal entries nonnegative = K = {p € R® | p > 0} is invariant

dpi

== (Ap)i >0 if pi =0

©®X =KNH ={pcR3|p>0, 17p =1} is invariant
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Invariant manifolds of master equation

dp —2a B 0 Po
AP = 20 —a—F 26| ip
0 a —203] |p2

© column sums equal zero = H, = {p € R® | 17p = r} is invariant

d(17p)

— =(1TAp=0 (17 =(1,1,1))

@® off-diagonal entries nonnegative = K = {p € R® | p > 0} is invariant

dpi

== (Ap)i >0 if pi =0

©®X =KNH ={pcR3|p>0, 17p =1} is invariant
e Probability distributions remain probability distributions!
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Behavior of solutions of autonomous master equation

dp —2« ﬁ 0 Po
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Behavior of solutions of autonomous master equation

dp —2« ﬁ 0 Po
o Ap=| 20 —a—-p0 203 p1
0 a —23] |p2

time
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Eigenstructure of A when A is irreducible

—2« ﬂ 0 ple’ a
A=120 —a—=f 26|, SZ=5"5
0 « 20 B 26
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Eigenstructure of A when A is irreducible

—2« ﬂ 0 ple’ a
A=120 —a—=f 26|, SZ=5"5
0 « 20 B 26

o Assume a#0, B #0
e Set v = max{2a,26} and G = A+l

e G is nonnegative, irreducible with left-eigenvector 17 and eigenvalue ~
e By Perron-Frobenius theorem

e ~ is simple eigenvalue of G
e other eigenvalues of G have modulus less than ~
e right-eigenvector v associated with « is positive

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 7 /35



Eigenstructure of A when A is irreducible

—2« ﬂ 0 ple’ a
A= 2a - — ﬁ Qﬁ s 50 51 - 52
0 a =20 g 28

Assume aa #0, B #0
Set v = max{2«, 23} and G = A+ v/

e G is nonnegative, irreducible with left-eigenvector 17 and eigenvalue ~
By Perron-Frobenius theorem

e ~ is simple eigenvalue of G

e other eigenvalues of G have modulus less than ~

e right-eigenvector v associated with « is positive
Therefore

e 0 is simple eigenvalue of A
e other eigenvalues of A have negative real part
o ker(A) is one-dimensional, spanned by positive vector v

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 7 /35



Solutions of master equation when A is irreducible

—2« ﬂ 0 2« o
A=12a —a-0f 20|, SHZ525
0 « —-20 B 26

e Let A1, A2, A3 be eigenvalues of A with A1 =0 > R(\2) > R(A3)
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e Let A1, A2, A3 be eigenvalues of A with A1 =0 > R(\2) > R(A3)
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e Let A1, A2, A3 be eigenvalues of A with A1 =0 > R(\2) > R(A3)
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Solutions of master equation when A is irreducible

—2« ﬂ 0 2« o
A=120c —a—=f 26|, S9Z=5"5
0 a  -28 B 2B

e Let A1, A2, A3 be eigenvalues of A with A1 =0 > R(\2) > R(A3)
e Let vy, vy, v3 be corresponding (generalized) eigenvectors with
Vi €21
e column space of A contained in Hy = {x € R® | 17x = 0}, hence
Vo, v3 € Hy

e By linear ODE theory, all probability distribution solutions of master
equation can be written

p(t) = exp(At)p(0) = vi + ety + c3etyg

where either ¢; or ¢3 may be linear in t
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Solutions of master equation when A is irreducible

—2« ﬂ 0 2« o
A=120c —a—=f 26|, S9Z=5"5
0 a  -28 B 2B

e Let A1, A2, A3 be eigenvalues of A with A1 =0 > R(\2) > R(A3)
e Let vy, vy, v3 be corresponding (generalized) eigenvectors with
Vi €21
e column space of A contained in Hy = {x € R® | 17x = 0}, hence
Vo, v3 € Hy

e By linear ODE theory, all probability distribution solutions of master
equation can be written

p(t) = exp(At)p(0) = vi + ety + c3etyg

where either ¢; or ¢3 may be linear in t

o Therefore p(t) — vy for all initial conditions
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Eigenstructure of A when A is reducible but not zero

0 0
A=lo - 28|, S&s s,
0 0 -28

e Assume o =0 but 5 #0
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e Assume o = 0 but 3 # 0
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Eigenstructure of A when A is reducible but not zero
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0 0 -28

e Assume o =0 but 5 #0
e Then )\1 =0, )\2 = —,3, )\3 = —Qﬁ
e Alsov; = (1,0,0)" and va,v3 € Hyp
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Eigenstructure of A when A is reducible but not zero

0 g 0 )
A=lo - 28|, S&s s,
0 0 -28

Assume oo =0 but §# 0
Then Ay =0, Ao = =3, A3 = —20
Also v = (1,0,0)" and va,v3 € Hp

Again, solution is

p(t) = exp(At)p(0) = vi + cre vz + cze™*tvg

hence p(t) — (1,0,0)7 for all initial conditions
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Eigenstructure of A when A is reducible but not zero

0 g 0 )
A=lo - 28|, S&s s,
0 0 -28

Assume oo =0 but §# 0
Then Ay =0, Ao = =3, A3 = —20
Also v = (1,0,0)" and va,v3 € Hp

Again, solution is

p(t) = exp(At)p(0) = vi + cre vz + cze™*tvg

hence p(t) — (1,0,0)7 for all initial conditions
Similarly, if 3 =0 but a # 0, then p(t) — (0,0,1)7
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Nonautonomous master equation
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g 23

e lon channel kinetics are dependent on external factors such as
membrane voltage
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Example lon Channel Kinetics

Nonautonomous master equation

2a a
So =5 "%
g 23

e lon channel kinetics are dependent on external factors such as
membrane voltage

e «, 3 are functions of time
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Example lon Channel Kinetics

Nonautonomous master equation

2a a
So =5 "%
g 23

e lon channel kinetics are dependent on external factors such as
membrane voltage

e «, 3 are functions of time

e How will solutions behave now?
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Behavior of solutions of nonautonomous master equation

dp —2« ﬁ 0 Po

E:Ap: 2 —a—=0B 28 | |m

0 a —23] |p2

a = |sin(t)|, B = |cos(t)] a = |tan(t)|, B=1t

1 1 T
0.9r _PD ___qo 4 0.9
0.8 —p, ---0, 1 08
0.7 — P, ---G g 0.7
z Zos
g 205
g S04
0.3
0.2
0.1

G0 1 . 3 4 5 00 2 _4 6 8
time time
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Behavior of solutions of nonautonomous master equation

dp _
dt

—2« ﬁ 0 Po
20 —a—=f 20| |p1
0 a —23] |p2

a = [ = exp(—2t)

1 1
0.9 0.9
0.8 —Po %o 0.8
J— q
0.7 Pa ql 0.7
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What causes solutions to approach each other?
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What causes solutions to approach each other?

e As in autonomous case, for each t > 0
e 0 is a simple eigenvalue of A(t)
e other eigenvalues of A(t) have negative real part
o ker(A(t)) is spanned by nonnegative vector vi(t) € X3
e other (generalized) eigenvectors vy(t),...,v,(t) span Hy

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 13 /35



What causes solutions to approach each other?

e As in autonomous case, for each t > 0
e 0 is a simple eigenvalue of A(t)
e other eigenvalues of A(t) have negative real part
o ker(A(t)) is spanned by nonnegative vector vi(t) € X3
e other (generalized) eigenvectors vy(t),...,v,(t) span Hy
e Not enough to cause solutions to approach each other!
e eigenstructure is often misleading for nonautonomous ODEs:
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What causes solutions to approach each other?

e As in autonomous case, for each t > 0
e 0 is a simple eigenvalue of A(t)
e other eigenvalues of A(t) have negative real part
o ker(A(t)) is spanned by nonnegative vector vi(t) € X3
e other (generalized) eigenvectors vy(t),...,v,(t) span Hy
e Not enough to cause solutions to approach each other!
e eigenstructure is often misleading for nonautonomous ODEs:

a11(t) = —1 — 9cos?(6t) + 12sin(6t) cos(6t)
a12(t) = 12 cos?(6t) + 9sin(6t) cos(6t)
ap1(t) = —12sin?(6t) + 9sin(t) cos(6t)
ap(t) = —1 — 9sin(6t) — 12sin(6t) cos(6t)
A(t) = [ajj(t)] has eigenvalues —1 and —10 for all t > 0, yet
x(t) = & §i!‘s((%tt))+_°;?§§2§ﬂ +2e7 B zions((66tt))—_ 52,2523

is a solution of x = A(t)x
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Current theory

If the transition rates vary according to specific functions of
time, the concentration of each subunit state approaches to a
specific function of time (in comparison to a constant value
when transition rates are constant) regardless of the initial
concentration of states.

Nekouzadeh, Silva and Rudy, Biophys J (2008)
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Outline for rest of talk

@ Set up the problem

® Propose conjecture that characterizes large class of time-dependent
A’s for which probability distribution solutions of corresponding
master equation are globally asymptotically stable (i.e. all such
solutions approach each other in time)

© Discuss van Kampen's theorem for autonomous master equations

O Generalize van Kampen's theorem for nonautonomous master
equations, and show that each generalization is special case of
conjecture

® Show that conjecture does not characterize all A's endowing
probability distribution solutions of master equation with global
asymptotic stability

@ Discuss existence of invariant manifolds
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Derivation of master equation

o Let X: Ry — {x1,...,x,} be (finite-state) jump process
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Derivation of master equation

o Let X: Ry — {x1,...,x,} be (finite-state) jump process
e Since jump process is Markov process, the transition probabilities

p(xi, tlxj, s) = Prob{X(t) = x; | X(s) = x;} (¢t >s=>0)

satisfy Chapman-Kolmogorov equation

n
p(Xiv t|XJ'75) = ZP(XI, t|Xk7 U),D(Xk, u|X_,‘,S) (t >uz S).
k=1
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Master equation
Derivation of master equation
o Let X: Ry — {x1,...,x,} be (finite-state) jump process
e Since jump process is Markov process, the transition probabilities
p(xi. thxj, ) = Prob{X(t) = x; | X(s) = x5} (t>s>0)
satisfy Chapman-Kolmogorov equation

n
p(Xi7 t|XJ'75) = Zp(xi) t|Xk7 U)p(Xk, U|Xj,5) (t >u> 5)-
k=1

e Assuming transition probabilities are of the form
p(xi, t + At|x;, t) = a;j(t)At + o(At) (t >0),

one derives master equation from CKE:

dp
P _ At
5 = A,
where off-diagonal entries are a;;(t) > 0 and a;(t) = —>_,,; a;(t)
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Master equation
Derivation of master equation
o Let X: Ry — {x1,...,x,} be (finite-state) jump process
e Since jump process is Markov process, the transition probabilities
p(xi. thxj, ) = Prob{X(t) = x; | X(s) = x5} (t>s>0)
satisfy Chapman-Kolmogorov equation

n
p(Xiv t|XJ'75) = ZP(XI, t|Xk7 U)p(Xk, U|X_,‘,5) (t >uz S).
k=1

e Assuming transition probabilities are of the form
p(xi, t + At|x;, t) = a;j(t)At + o(At) (t >0),

one derives master equation from CKE:

dp
— = A(t
5 = A,
where off-diagonal entries are a;;(t) > 0 and a;(t) = —>_,,; a;(t)

e van Kampen calls these W-matrices
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Fundamental matrix solution and invariant manifolds

dp
£ — At
™ (t)p
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Fundamental matrix solution and invariant manifolds

dp _

5 = Alp

e Assume A is continuous = existence of fundamental matrix solution
L t>s>0:
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Fundamental matrix solution and invariant manifolds

dp
£ — At
™ (t)p

e Assume A is continuous = existence of fundamental matrix solution
L t>s>0:
o &l is identity matrix
o OLOY =L whent>u>s
e x(t) = ®ly is unique solution of master equation with x(s) =y
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Fundamental matrix solution and invariant manifolds

dp
£ — At
™ (t)p

e Assume A is continuous = existence of fundamental matrix solution
L t>s>0:
o &l is identity matrix
o OLOY =L whent>u>s
e x(t) = ®ly is unique solution of master equation with x(s) =y

e column sums equal zero = H, = {p € R3 | 17p = r} is invariant
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Fundamental matrix solution and invariant manifolds

dp
£ — At
™ (t)p

e Assume A is continuous = existence of fundamental matrix solution
L t>s>0:
o &l is identity matrix
o OLOY =L whent>u>s
e x(t) = ®ly is unique solution of master equation with x(s) =y
e column sums equal zero = H, = {p € R3 | 17p = r} is invariant
o je. PIH, C H, forallt >s>0
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Fundamental matrix solution and invariant manifolds

dp
£ — At
™ (t)p

e Assume A is continuous = existence of fundamental matrix solution
L t>s>0:
o &l is identity matrix
o OLOY =L whent>u>s
e x(t) = ®ly is unique solution of master equation with x(s) =y
e column sums equal zero = H, = {p € R3 | 17p = r} is invariant
o je. PIH, C H, forallt >s>0

e off-diagonal entries nonnegative = K = {p € R® | p > 0} is invariant
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Fundamental matrix solution and invariant manifolds

dp
£ — At
™ (t)p

Assume A is continuous = existence of fundamental matrix solution
L t>s>0:

o &l is identity matrix

o OLOY =L whent>u>s

e x(t) = ®ly is unique solution of master equation with x(s) =y

e column sums equal zero = H, = {p € R3 | 17p = r} is invariant
o je. PIH, C H, forallt >s>0

off-diagonal entries nonnegative = K = {p € R3 | p > 0} is invariant
Y1 = KN Hy is invariant
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Global asymptotic stability

dp

— = A(t

o = Al

Definition

A probability distribution solution p of the master equation is globally
asymptotically stable (GAS) in the set of all such solutions if for all other
probability distribution solutions q,

p(t) —q(t) - 0 as t — oo.

We say the master equation is GAS if its probability distribution solutions
are GAS. )
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dp

— = A(t

o = Al

Definition

A probability distribution solution p of the master equation is globally
asymptotically stable (GAS) in the set of all such solutions if for all other
probability distribution solutions q,

p(t) —q(t) - 0 as t — oo.

We say the master equation is GAS if its probability distribution solutions
are GAS. )

e Note that p(t) — q(t) € Hp for all t >0
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Global asymptotic stability

dp

— = A(t

o = Al

Definition

A probability distribution solution p of the master equation is globally
asymptotically stable (GAS) in the set of all such solutions if for all other
probability distribution solutions q,

p(t) —q(t) - 0 as t — oo.

We say the master equation is GAS if its probability distribution solutions
are GAS. )

e Note that p(t) — q(t) € Hp for all t >0
o Therefore, master equation is GAS if and only if 0 is globally
asymptotically stable in Hy
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(@IS Statement

Conjecture

dp
£ — At
™ (t)p

Conjecture

Let A: R, — R"" be a continuous, W-matrix-valued function, and let
A1(t), ..., An(t) be an ordering of the n eigenvalues of A(t), counting
multiplicities, such that R(A1(t)) > --- > R(An(t)) for all t > 0. If R(\2)
is not integrable, then the master equation is GAS.
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Eigenstructure of W-matrices

e W-matrix: any matrix (including zero) whose off-diagonal entries are
nonnegative and whose column sums are zero
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Eigenstructure of W-matrices

e W-matrix: any matrix (including zero) whose off-diagonal entries are
nonnegative and whose column sums are zero
o If M is W-matrix, then by Perron-Frobenius theorem

e 0 is eigenvalue of M (not necessarily simple)
e there exists nonnegative eigenvector v of M associated with 0
e all other eigenvalues have real part < 0
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Eigenstructure of W-matrices

e W-matrix: any matrix (including zero) whose off-diagonal entries are
nonnegative and whose column sums are zero
o If M is W-matrix, then by Perron-Frobenius theorem
e 0 is eigenvalue of M (not necessarily simple)
e there exists nonnegative eigenvector v of M associated with 0
e all other eigenvalues have real part < 0
e Since column space of A is contained in Hy, algebraic and geometric
multiplicities of 0 are equal
° A"x;révforanykzl,xeR”
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Null space of W-matrices

e Irreducible normal form: there exists permutation matrix P such that

My N - Ny
PiMP = Moo T
0 0 --- M,

e each M, is irreducible (and so necessarily square)
e each Nj is nonnegative matrix
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e Irreducible normal form: there exists permutation matrix P such that

My N - Ny
PiMP = Moo T
0 0 --- M,

e each M, is irreducible (and so necessarily square)
e each Nj is nonnegative matrix

e M is irreducible if and only if k =1
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Null space of W-matrices

e Irreducible normal form: there exists permutation matrix P such that

My N - Ny
PiMP = Moo T
0 0 --- M,

e each M, is irreducible (and so necessarily square)
e each Nj is nonnegative matrix

e M is irreducible if and only if k =1
o ker(M) is spanned by positive vector v; € X1 (Perron-Frobenius)
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Null space of W-matrices

e Irreducible normal form: there exists permutation matrix P such that

My N - Ny
PiMP = Moo T
0 0 --- M,

e each M, is irreducible (and so necessarily square)
e each Nj is nonnegative matrix

e M is irreducible if and only if k =1
o ker(M) is spanned by positive vector v; € X1 (Perron-Frobenius)
e M is reducible if and only if k > 1
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Null space of W-matrices

e Irreducible normal form: there exists permutation matrix P such that

My N - Ny
PiMP = Moo T
0 0 --- M,

e each M, is irreducible (and so necessarily square)
e each Nj is nonnegative matrix

e M is irreducible if and only if k =1
o ker(M) is spanned by positive vector v; € X1 (Perron-Frobenius)
e M is reducible if and only if k > 1

o ker(M) is spanned by nonnegative vector v; € X5 if and only if for each
J=2,...,k there exists i < j such that Nj; is not zero matrix
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Null space of W-matrices

e Irreducible normal form: there exists permutation matrix P such that

My N - Ny
PiMP = Moo T
0 0 --- M,

e each M, is irreducible (and so necessarily square)
e each Nj is nonnegative matrix

e M is irreducible if and only if k =1
o ker(M) is spanned by positive vector v; € X1 (Perron-Frobenius)
e M is reducible if and only if k > 1

o ker(M) is spanned by nonnegative vector v; € X5 if and only if for each
J=2,...,k there exists i < j such that Nj; is not zero matrix
o Otherwise, ker(M) has dimension > 2 = ker(M) N Hy is nontrivial
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Decomposable and splitting W-matrices

If M is reducible and the dimension of ker(M) is > 2, then M is either
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Decomposable and splitting W-matrices

If M is reducible and the dimension of ker(M) is > 2, then M is either

e decomposable if there exists permutation matrix P such that

PIMP = [Ml 0]

0 M
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Decomposable and splitting W-matrices

If M is reducible and the dimension of ker(M) is > 2, then M is either

e decomposable if there exists permutation matrix P such that

PIMP = [Ml 0]

0 M

o splitting if there exists permutation matrix P such that

M, 0 M
PIMP=|0 M N,
0 0 Ms
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Conjecture revisited

Conjecture

Let A: Ry — R™" be a continuous, W-matrix-valued function, and let
A1(t), ..., An(t) be an ordering of the n eigenvalues of A(t), counting
multiplicities, such that R(A1(t)) > -+ > R(Ap(t)) for all t > 0. If R(\2)
is not integrable, then the master equation is GAS.

e \i(t)=0forallt>0
e R(A2(t)) <Oforallt>0
e R(N2(t)) <0< ker(A(t)) N Hy = {0}
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Conjecture revisited

Conjecture

Let A: Ry — R™" be a continuous, W-matrix-valued function, and let
A1(t), ..., An(t) be an ordering of the n eigenvalues of A(t), counting
multiplicities, such that R(A1(t)) > -+ > R(Ap(t)) for all t > 0. If R(\2)
is not integrable, then the master equation is GAS.

e \i(t)=0forallt>0
e R(A2(t)) <Oforallt>0
e R(N2(t)) <0< ker(A(t)) N Hy = {0}

But eigenstructure can be misleading!

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 23 /35



|x(t)||1 as Lyapunov function for Hp-solutions

T

o Recall ||x||; = 320, |xi| = sgn(x) "x

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 24 / 35



|x(t)||1 as Lyapunov function for Hp-solutions

T

e Recall [|x]|1 = 30, |xi| = sgn(x)Tx

e If x(t) is Hp-solution of master equation, then ||x(t)||1 is
differentiable for a.e. t:

d|lx(t)[l1

o = sen(x(1) TA(Dx(2)
— D D At — D Y a(t) k()
ie[n\I+ jel+ ie[n\I- jel-
=SS atx(e) - D0 a(t) Ixi(t)
icl_ jely icly jel—

e jelyex(t)y>0andjel_ < xi(t)<0= deétt)lll <0
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|x(t)||1 as Lyapunov function for Hp-solutions

T

e Recall [|x]|1 = 30, |xi| = sgn(x)Tx

e If x(t) is Hp-solution of master equation, then ||x(t)||1 is
differentiable for a.e. t:

d|lx(t)[l1

o = sen(x(1) TA(Dx(2)
— D D At — D Y a(t) k()
ie[n\I+ jel+ ie[n\I- jel-
=SS atx(e) - D0 a(t) Ixi(t)
icl_ jely icly jel—

J jeI+<:>Xj(t)>oandj€/_<:>Xj(t)<0jwSO
o If % = 0 then A(t) is decomposable or splitting (= A2(t) = 0)

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 24 / 35



|x(t)||1 as Lyapunov function for Hp-solutions

T

e Recall [|x]|1 = 30, |xi| = sgn(x)Tx

e If x(t) is Hp-solution of master equation, then ||x(t)||1 is
differentiable for a.e. t:

d|lx(t)[l1

o = sen(x(1) TA(Dx(2)
— D D At — D Y a(t) k()
ie[n\I+ jel+ ie[n\I- jel-
=SS atx(e) - D0 a(t) Ixi(t)
icl_ jely icly jel—

e jel o x(t)>0and )€ l_ & x(t) < 0= 4Bl <
o |f % = 0 then A(t) is decomposable or splitting (= A2(t) = 0)
e The converse: if ®(A2(t)) < 0 then W <0
Nonautonomous master equations January 28, 2009 24 / 35



Conjecture rerevisited

Conjecture

Let A: R, — R"" be a continuous, W-matrix-valued function, and let
A1(t), ..., An(t) be an ordering of the n eigenvalues of A(t), counting
multiplicities, such that R(A1(t)) > -+ > R(Ap(t)) for all t > 0. If R(\2)
is not integrable, then the master equation is GAS.

o If R(A2(t)) < 0 then % < 0 for any Hp-solution x
e The nonintegrability of (\2) “should” ensure that ||x(t)||1 — 0
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van Kampen's theorem Statement and proof

van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

O
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van Kampen's theorem Statement and proof

van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

e R(A2) < 0 since A is neither decomposable nor splitting
° =>8?(/\,) <0 (i:2,...,n)
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van Kampen's theorem Statement and proof

van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

e R(A2) < 0 since A is neither decomposable nor splitting
° =>8?(/\,')<0 (i:2,...,n)

o Every probability distribution solution p of master equation is of form
p(t) = vi + ce™ivy + - + ety

where ¢;'s are polynomials in t of degree < n

O
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van Kampen's theorem Statement and proof

van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

e R(A2) < 0 since A is neither decomposable nor splitting
° =>8?(/\,')<0 (i:2,...,n)

o Every probability distribution solution p of master equation is of form
p(t) = vi + ce™ivy + - + ety

where ¢;'s are polynomials in t of degree < n

e Therefore, p(t) — vi independent of initial conditions

(Note: converse of theorem is also true) O
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van Kampen's theorem Generalizations

First generalization of van Kampen's theorem

e van Kampen's theorem is special case of conjecture
e X\(t) < 0 is constant, so not integrable

e all probability distribution solutions approach vi, so master equation is

GAS
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van Kampen's theorem Generalizations

First generalization of van Kampen's theorem

e van Kampen's theorem is special case of conjecture
e X\(t) < 0 is constant, so not integrable

e all probability distribution solutions approach vi, so master equation is
GAS

e Theorem can be extended slightly using similar proof

Theorem

Suppose A(t) = f(t)M for all t > 0, where M is constant W-matrix and
f : Ry — Ry is continuous. Then master equation is GAS if and only if
M is neither decomposable nor splitting and f is not integrable.
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van Kampen's theorem Generalizations

First generalization of van Kampen's theorem

Theorem

Suppose A(t) = f(t)M for all t > 0, where M is constant W-matrix and
f : Ry — Ry is continuous. Then master equation is GAS if and only if
M is neither decomposable nor splitting and f is not integrable.

Proof.

e fundamental matrix solution is

®; = exp [/:A(u)du} = exp [(/st f(u)du) M}

e Every probability distribution solution p is of form

p(t) = vi + e I Fluyduy, ... 4 ¢, el Iy f(u)duy,

where p;'s are eigenvalues of M

o Therefore, p(t) — v; if and only if fot f(u)du — o0

B.A. Earnshaw, J.P. Keener (Utah)
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van Kampen's theorem Generalizations

Example of first generalization

d -2 1 0
d—'Z:Ap:f(t) 2 2 2|p
0 1 -2
f(t)y=(t+1)! f(t) = exp(—2t)
1 1
0.9 0.9
0.8} —Po -- '20 J 0.8
0.7 —Pr - 1 0.7
EO.G!‘)Z -t ] 50.5¥
£ ost —— Sosp
204—‘\1 . S04 \\"_—"
0'3(,(' e 031\ _______________________________________________________
oAz/?”i 02/-kr
0.1 01
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van Kampen's theorem Generalizations

Generalization of van Kampen's theorem for periodic A
Theorem

If A is continuous, periodic, W-matrix-valued function such that the
w-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.
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van Kampen's theorem Generalizations

Generalization of van Kampen's theorem for periodic A
Theorem

If A is continuous, periodic, W-matrix-valued function such that the
w-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.

e Let 7 > 0 minimal period, E ={y € Ho | ||y|]1 = 1}, and

f:E—Ry, f(y) =%yl
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van Kampen's theorem Generalizations

Generalization of van Kampen's theorem for periodic A
Theorem

If A is continuous, periodic, W-matrix-valued function such that the
w-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.
e Let 7 > 0 minimal period, E ={y € Ho | ||y|]1 = 1}, and
frE—Ry, f(y)=Il%ylh

e Exists interval U € [0, 7) such that A(t) is neither decomposable nor
splitting for all t € U
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van Kampen's theorem Generalizations

Generalization of van Kampen's theorem for periodic A
Theorem

If A is continuous, periodic, W-matrix-valued function such that the
w-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.

e Let 7 > 0 minimal period, E ={y € Ho | ||y|]1 = 1}, and

frE—Ry, f(y)=Il%ylh

e Exists interval U € [0, 7) such that A(t) is neither decomposable nor
splitting for all t € U

o Therefore f(y) < 1 for all y € E since M <0forae teU
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van Kampen's theorem Generalizations

Generalization of van Kampen's theorem for periodic A

Theorem

If A is continuous, periodic, W-matrix-valued function such that the
w-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.
e Let 7 > 0 minimal period, E ={y € Ho | ||y|]1 = 1}, and

frE—Ry, f(y)=Il%ylh

e Exists interval U € [0, 7) such that A(t) is neither decomposable nor
splitting for all t € U

o Therefore f(y) < 1 for all y € E since M <0forae teU
e Compactness of E = f(z) = max{f(y) | y € E} for some z € E

M
B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations January 28, 2009 30 /35



van Kampen's theorem Generalizations

Generalization of van Kampen's theorem for periodic A

Theorem

If A is continuous, periodic, W-matrix-valued function such that the
w-limit set of A contains at least one matrix which is neither
decomposable nor splitting, then the master equation is GAS.

Proof.
e Let 7 > 0 minimal period, E ={y € Ho | ||y|]1 = 1}, and

frE—Ry, f(y)=Il%ylh

Exists interval U € [0, 7) such that A(t) is neither decomposable nor
splitting for all t € U

Therefore f(y) < 1 for all y € E since M <0forae teU
Compactness of E = f(z) = max{f(y) |y € E} for some z € E
Therefore, ||P§7x||1 < f(2)¥||x||1 — 0 as k — oo for all x € Hp

M
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van Kampen's theorem Generalizations

Further generalization for asymptotically periodic A

Theorem

If A is continuous, W-matrix-valued and there exists a continuous,
periodic, W-matrix-valued function B whose w-limit set contains at least
one matrix that is neither decomposable nor splitting such that

Jim [|A() ~ B(£)][1 = 0,

then the master equation is GAS.

e Theorem is special case of conjecture since Ay asymptotically

approaches a nonpositive periodic function which is negative at least
once during the period.
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van Kampen's theorem Generalizations

Another generalization of van Kampen's theorem

Theorem

If A is differentiable, W-matrix-valued function such that both A and its
derivative are bounded, and the w-limit set of A contains no matrix which
is either decomposable or splitting, then the master equation is GAS.

e Proof is “involved”, is (correct) extension of van Kampen's original
method

e Idea: show that if ||x(t)||y — r > 0, then w(A) contains a
decomposable or splitting matrix

e Theorem is special case of conjecture since w(A2) contains negative
number and \5(t) is bounded
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Excmple
A2(t) = 0 for all t > 0 but master equation is GAS

-1 1 0 0 0 0
A, t 1
b telo )’, Ai=|1 -1 0|,A=]0 -1 1
Ay, tel,2),

0 0 O 0 1 -1

A(t) =

Al T B 1 T
—Py ---0 o og|
o8 — P2 -9 29 0.8 09
—p, ---q o4 04
3 3 0.2} 0.2
206
H
g
S
204

0.2f <.

probability
o
_5

o
=

0.2f. _

0 2 4 6 8 10 0 2 4 6 8 10 12
time time
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Low-dimensional invariant manifolds

Low-dimensional invariant manifolds of 2 ;

e If master equation is GAS and ¥ C ¥ is invariant manifold of master
equation, then X is globally attracting (i.e. lim;_ p(t) € ¥)
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Low-dimensional invariant manifolds

Low-dimensional invariant manifolds of 2 ;

e If master equation is GAS and ¥ C ¥ is invariant manifold of master
equation, then ¥ is globally attracting (i.e. lim;_ o p(t) € X)
e In ion channel example, one-dimensional manifold B of all binomial
distributions is invariant
(1-6)?
b(0) = |26(1 —0) (6 €10,1])
02

meaning

A(t)b(6) = %Z—f wit Z—f — a(t)(1— 0) — B(t)0
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Low-dimensional invariant manifolds

Low-dimensional invariant manifolds of 2 ;

e If master equation is GAS and ¥ C ¥ is invariant manifold of master
equation, then ¥ is globally attracting (i.e. lim;_ o p(t) € X)
e In ion channel example, one-dimensional manifold B of all binomial
distributions is invariant
(1-6)?
b(0) = |26(1 —0) (6 €10,1])
02

meaning

A(t)b(6) = %Z—f with Z—f — a(t)(1— 0) — B(t)0

e Last equation holds for any choice of nonnegative functions «, 3
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Thank you!

Thanks to
e Jim Keener
o NSF-IGERT for funding
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