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What is a master equation?

o Let X: Ry — {xp,...,x,} be finite-state jump process
e Assuming X is a Markov process, the transition probabilities

p(i, tlj,s) = Prob{X(t) = xi | X(s) = x;} (t>s>0)
satisfy the Chapman-Kolmogorov equations

p(i,tlj,s) = Xi_1p(i, t|k, u)p(k,ulj,s) (t>u>s).
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What is a master equation?

o Let X: Ry — {xp,...,x,} be finite-state jump process
e Assuming X is a Markov process, the transition probabilities

p(i, tlj,s) = Prob{X(t) = x | X(s) = x} (t=s=0)
satisfy the Chapman-Kolmogorov equations
pli,tlj.s) = Tj_yp(i, tlk, u)p(k,ulj,s) (> u>s).
e Assuming transition probabilities are of the form
p(i, t + At|x;, t) = 6; + ajj(t)At + o(At) (t>0)
ajj right-continuous, a; >0 (i #j), aj = —Xizjaj
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What is a master equation?

o Let X: Ry — {xp,...,x,} be finite-state jump process
e Assuming X is a Markov process, the transition probabilities

p(i, tlj,s) = Prob{X(t) = x | X(s) = x} (t=s=0)
satisfy the Chapman-Kolmogorov equations
p(i,tl),s) = Xi1p(is tlk, u)p(k, ulj,s)  (t = u > s).
e Assuming transition probabilities are of the form
p(i, t + At|x;, t) = 6; + ajj(t)At + o(At) (t>0)
ajj right-continuous, a; >0 (i #j), aj = —Xizjaj
one derives master equation from CKE in the limit At — 0:

dpi
= A(t)p;
p (t)p

A(t) = (az(t)),  pi = (pios---pin) "5 py(t) = p(i, t]j,0)
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What is a master equation?

o Let X: Ry — {xp,...,x,} be finite-state jump process
e Assuming X is a Markov process, the transition probabilities

p(i, tlj,s) = Prob{X(t) = x | X(s) = x} (t=s=0)
satisfy the Chapman-Kolmogorov equations
pli, tlj.s) = Eh_ypli, tlk, up(k,ulj,s) (¢ > u>s).
e Assuming transition probabilities are of the form
p(i, t + At|x;, t) = 6; + ajj(t)At + o(At) (t>0)
ajj right-continuous, a; >0 (i #j), aj = —Xizjaj
one derives master equation from CKE in the limit At — 0:

dpi
= A(t)p;
p (t)p

A(t) = (alj(t))7 pi = (pi07"°7pin)T7 plj(t) :p(l7t|./70)
e Matrices like A(t) called W-matrices [van Kampen]
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Master equations Example
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Master equations Example
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RS

e Each subunit has two states: open or closed

e Channel has 3 states: xp, x1, x2 (i = # open subunits)
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Master equations Example

lon channel with two identical, independent subunits

RS

e Each subunit has two states: open or closed
e Channel has 3 states: xp, x1, x2 (i = # open subunits)

e Subunits open, close randomly with rates «, 8
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Master equations Example

lon channel with two identical, independent subunits

e Each subunit has two states: open or closed
e Channel has 3 states: xp, x1, x2 (i = # open subunits)

e Subunits open, close randomly with rates «, 8

2c «
State diagram: xp — x1 — xo
B 28
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Master equations Example

Master equation for ion channel kinetics

2 a
X0 X1 X
B 2

e p(t) = (po(t), p1(t), p2(t))T = probability distribution for X(t)
pi(t) = Prob{X(t) = x; [ p(0)}
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Master equations Example

Master equation for ion channel kinetics

2 a
X0 X1 X
B 2

e p(t) = (po(t), p1(t), p2(t))T = probability distribution for X(t)
pi(t) = Prob{X(t) = x; [ p(0)}

dp —2a B 0 Po

Master equation: — =Ap=|2a —a—0 203 p1
dt

0 a —203] |p2
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Eample
Behavior of solutions of autonomous master equation
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van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.
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van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

A is decomposable if there exists A is splitting if there exists
permutation matrix P such that permutation matrix P such that
Al 0 AL 0 B
—12p_ |1 1 1
prAP= [0 Az] PlAP=|0 Ay B
0 0 As
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Master equations van Kampen's theorem

van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

A is decomposable if there exists A is splitting if there exists
permutation matrix P such that permutation matrix P such that
Al 0 AL 0 B
—12p_ |1 1 1
prAP= [0 Az] PlAP=|0 Ay B
0 0 As

For all W-matrices,

e All columns sum to zero = zero is eigenvalue
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Master equations van Kampen's theorem

van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

A is decomposable if there exists A is splitting if there exists
permutation matrix P such that permutation matrix P such that
Al 0 AL 0 B
—12p_ |1 1 1
prAP= [0 Az] PlAP=|0 Ay B
0 0 As

For all W-matrices,
e All columns sum to zero = zero is eigenvalue

o Other eigenvalues have negative real part
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Master equations van Kampen's theorem

van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

A is decomposable if there exists A is splitting if there exists
permutation matrix P such that permutation matrix P such that
Al 0 AL 0 B
—12p_ |1 1 1
prAP= [0 Az] PlAP=|0 Ay B
0 0 As

For all W-matrices,
e All columns sum to zero = zero is eigenvalue
o Other eigenvalues have negative real part
e Zero is repeated eigenvalue < decomposable or splitting
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Master equations van Kampen's theorem

van Kampen's theorem for autonomous master equations
Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.
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Master equations van Kampen's theorem

van Kampen's theorem for autonomous master equations
Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.
o Let Ag,..., A\, be ordering of eigenvalues of A such that
0=202R(M) = = R(\)
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Master equations van Kampen's theorem

van Kampen's theorem for autonomous master equations
Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.
o Let Ag,..., A\, be ordering of eigenvalues of A such that
0=20=R(1) = - = R(\)
e R(A\j) <O0fori=1,...,nsince Ais not decomposable, splitting
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Master equations van Kampen's theorem

van Kampen's theorem for autonomous master equations
Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.
o Let Ag,..., A\, be ordering of eigenvalues of A such that
0=20=R(1) = - = R(\)
e R(A\j) <O0fori=1,...,nsince Ais not decomposable, splitting

o Every probability distribution solution p of master equation is of form
p(t) = vo + creMfvy + - + ey,

where v;'s are eigenvectors and ¢;'s are polynomials in t
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Master equations van Kampen's theorem

van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.
o Let Ag,..., A\, be ordering of eigenvalues of A such that
0=20=R(1) = - = R(\)
e R(A\j) <O0fori=1,...,nsince Ais not decomposable, splitting
o Every probability distribution solution p of master equation is of form
p(t) = vo + creMivy + - + iy,
where v;'s are eigenvectors and ¢;'s are polynomials in t

e Therefore, p(t) — vg independent of initial conditions

BAE, Keener (MSU, Utah) Nonautonomous master equations October 8, 2009 8725



Master equations van Kampen's theorem

van Kampen's theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.
o Let Ag,..., A\, be ordering of eigenvalues of A such that
0=20=R(1) = - = R(\)
e R(A\j) <O0fori=1,...,nsince Ais not decomposable, splitting

o Every probability distribution solution p of master equation is of form
p(t) = vo + creMivy + - + iy,
where v;'s are eigenvectors and ¢;'s are polynomials in t
e Therefore, p(t) — vg independent of initial conditions

e Note: converse of theorem is also true
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Master equations Nonautonomous

Nonautonomous master equation

e |on channel kinetics are dependent on external factors — e.g.,
membrane voltage and ligand concentration
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e |on channel kinetics are dependent on external factors — e.g.,
membrane voltage and ligand concentration

e Open and close rates «, 3 are functions of time!
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Master equations Nonautonomous

Nonautonomous master equation

e |on channel kinetics are dependent on external factors — e.g.,
membrane voltage and ligand concentration

e Open and close rates «, 3 are functions of time!

e How will solutions behave now?
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Behavior of solutions of nonautonomous master equation
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Master equations Nonautonomous

Behavior of solutions of nonautonomous master equation

dp —2« B 0 Po
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Behavior of solutions of nonautonomous master equation
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What causes solutions to approach each other?

Current theory

If the transition rates vary according to specific functions of
time, the concentration of each subunit state approaches to a
specific function of time (in comparison to a constant value
when transition rates are constant) regardless of the initial
concentration of states.

Nekouzadeh, Silva and Rudy, Biophys J (2008)
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What causes solutions to approach each other?
e As in autonomous case, for each t > 0

e 0 is a simple eigenvalue of A(t)
e other eigenvalues of A(t) have negative real part
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e 0 is a simple eigenvalue of A(t)
e other eigenvalues of A(t) have negative real part

e Eigenstructure can be misleading for nonautonomous ODEs!
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What causes solutions to approach each other?

e As in autonomous case, for each t > 0

e 0 is a simple eigenvalue of A(t)
e other eigenvalues of A(t) have negative real part

e Eigenstructure can be misleading for nonautonomous ODEs!
a11(t) = —1 — 9cos?(6t) + 12sin(6t) cos(6t)

a12(t) = 12cos?(6t) + 9sin(6t) cos(6t)
ap1(t) = —12sin?(6t) + 9sin(6t) cos(6t)
an(t) = —1 — 9sin?(6t) — 12sin(6t) cos(6t)

A(t) = (ajj(t)) has eigenvalues —1 and —10 for all t > 0, yet

¢ |2sin(6t) 4 cos(6t) _13t [2cos(6t) — sin(6t)
x(t) = € 2cos(6t) — sin(6t)] +2e7 [2 sin(6t) — cos(6t)

is a solution of x = A(t)x
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L'-norm as Lyapunov function for Hg-solutions

e Recall |[x|[1 = > 1 |xil
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o Define Hy = {x | >./_; x; =0}

e Hj is invariant manifold of master equation

BAE, Keener (MSU, Utah) Nonautonomous master equations October 8, 2009 15 /25



L'-norm as Lyapunov function for Hg-solutions
e Recall [[x|[1 = >/, |xi]
o Define Hy = {x | >./_; x; =0}

e Hj is invariant manifold of master equation
e p(t), q(t) probability distribution solutions = p(t) — q(t) € Ho
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L'-norm as Lyapunov function for Hg-solutions

e Recall [[x[[y =3 74 xil
o Define Hy = {x | >./_; x; =0}
e Hj is invariant manifold of master equation
e p(t), q(t) probability distribution solutions = p(t) — q(t) € Ho

e If x(t) is any Hp-solution, then for a.e. t:

Ok — 5~ S oo - X 3 a6 (o)

ie[n\I+jel+ ie[n]\I- jel-
—E:E:aut)xj E:E:au ) [ ()|
iel_ jely i€l jel-
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L'-norm as Lyapunov function for Hg-solutions

e Recall [[x[[y =3 74 xil
o Define Hy = {x | >./_; x; =0}
e Hj is invariant manifold of master equation
e p(t), q(t) probability distribution solutions = p(t) — q(t) € Ho

e If x(t) is any Hp-solution, then for a.e. t:

dl|x(e)llx _
Ok — 5~ S oo - X 3 a6 (o)

ie[n\I+jel+ ie[n]\I- jel-
—E:E:aut)xj E:E:au ) [ ()|
iel_ jely i€l jel-

e /., |_ contain positive, negative indices of x(t), hence % <0
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L'-norm as Lyapunov function for Hg-solutions

e Recall [[x[[y =3 74 xil
o Define Hy = {x | >./_; x; =0}
e Hj is invariant manifold of master equation
e p(t), q(t) probability distribution solutions = p(t) — q(t) € Ho

e If x(t) is any Hp-solution, then for a.e. t:

Ok — 5~ S oo - X 3 a6 (o)

ie[n\I+jel+ ie[n]\I- jel-
—E:E:aut)xj E:E:au ) [ ()|
iel_ jely i€l jel-

e /., |_ contain positive, negative indices of x(t), hence % <0

o If % = 0 then A(t) is decomposable or splitting (= A1(t) = 0)
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L'-norm as Lyapunov function for Hg-solutions

Recall [[x|ls = 3274 [xil
Define Hyp = {x | >_7_; x; = 0}
e Hj is invariant manifold of master equation
e p(t), q(t) probability distribution solutions = p(t) — q(t) € Ho

If x(t) is any Hp-solution, then for a.e. t:

dl|x(e)llx _
Ok — 5~ S oo - X 3 a6 (o)

ie[n\I+jel+ ie[n]\I- jel-
—E:E:aut)xj E:E:au ) [ ()|
iel_ jely i€l jel-

I+, I_ contain positive, negative indices of x(t), hence % <0
If % = 0 then A(t) is decomposable or splitting (= A1(t) = 0)

Contrapositive: if ®(A1(t)) < 0 then % <0
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Nonautonomous extensions of van Kampen's theorem
First extension of van Kampen's theorem

ot) = B(t) = (¢ + 1)~ a(t) = B(t) = exp(~2t)

1 1
0.9 0.9
0.8 —Po ---% 0.8
0.7 —P - 0.7
.?0.6L_p2 T Z06
go.s‘ e go.s‘\
504f 7 504
0.3 ,\"\\ ________ 0.3 B
o_z?k = 02/_? """""""""""
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% 1 2 3 4 % 1 2 3 4
time time
-2 1 0
A)=at) |2 —2 2
0 1 -2
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Master equations Nonautonomous extensions of van Kampen's theorem

First extension of van Kampen's theorem

Theorem

Suppose A(t) = f(t)M for all t > 0, where M is constant W-matrix and
f: Ry — Ry is continuous. Then every probability distribution solutions
of the master equation approaches a unique stationary distribution if and
only if M is neither decomposable nor splitting and f is not integrable.
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Master equations Nonautonomous extensions of van Kampen's theorem

First extension of van Kampen's theorem

Theorem

Suppose A(t) = f(t)M for all t > 0, where M is constant W-matrix and
f: Ry — Ry is continuous. Then every probability distribution solutions
of the master equation approaches a unique stationary distribution if and
only if M is neither decomposable nor splitting and f is not integrable.

e Proof similar to van Kampen's theorem since FMS is

f — exp </OtA(t)> — exp (F()M) <F(t):/0t f(s)ds>
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Master equations Nonautonomous extensions of van Kampen's theorem

First extension of van Kampen's theorem

Theorem

Suppose A(t) = f(t)M for all t > 0, where M is constant W-matrix and
f: Ry — Ry is continuous. Then every probability distribution solutions
of the master equation approaches a unique stationary distribution if and
only if M is neither decomposable nor splitting and f is not integrable.

e Proof similar to van Kampen's theorem since FMS is

f — exp </OtA(t)> — exp (F()M) <F(t):/0t f(s)ds>

e Hence every probability distribution solution p is of form
p(t) = vo 4 cre”FOy; ... 4 g et F(ty,

where pj, v; are eigenpairs of M and ¢;'s are polynomials in F(t)
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Master equations Nonautonomous extensions of van Kampen's theorem

First extension of van Kampen's theorem

Theorem

Suppose A(t) = f(t)M for all t > 0, where M is constant W-matrix and
f: Ry — Ry is continuous. Then every probability distribution solutions
of the master equation approaches a unique stationary distribution if and
only if M is neither decomposable nor splitting and f is not integrable.

e Proof similar to van Kampen's theorem since FMS is

f — exp </OtA(t)> — exp (F()M) <F(t):/0t f(s)ds>

e Hence every probability distribution solution p is of form
p(t) = vo 4 cre”FOy; ... 4 g et F(ty,

where pj, v; are eigenpairs of M and ¢;'s are polynomials in F(t)
o p(t) = vog< R(pi) <O0fori=1,...,n and F(t) — o0
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Nonautonomous extensions of van Kampen's theorem
Extension for asymptotically periodic A

a = O(sin(rt)), S = ©O(cos(7t)) o= ‘sin(te_l/t)‘, 8= |cos(te_1/t)‘

e In both cases, A approaches a periodic matrix
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Master equations Nonautonomous extensions of van Kampen's theorem

Extension for asymptotically periodic A
Definition

The probability distribution solutions of a master equation are globally
asymptotically stable (GAS) if for every pair of such solutions p, q

p(t) —q(t) > 0as t — oo.

Theorem

Suppose A is a continuous, W-matrix-valued function, and that there
exists a continuous, periodic, W-matrix-valued function B, whose w-limit
set contains at least one matrix that is neither decomposable nor splitting,
such that

lim [|A() — B(2)]| = 0.

Then the probability distribution solutions of the master equation are GAS.
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Master equations Nonautonomous extensions of van Kampen's theorem

Extension for asymptotically periodic A
Definition

The probability distribution solutions of a master equation are globally
asymptotically stable (GAS) if for every pair of such solutions p, q

p(t) —q(t) > 0as t — oo.

Theorem

Suppose A is a continuous, W-matrix-valued function, and that there
exists a continuous, periodic, W-matrix-valued function B, whose w-limit
set contains at least one matrix that is neither decomposable nor splitting,
such that

lim [|A() — B(2)]| = 0.

Then the probability distribution solutions of the master equation are GAS.

e Proof: £l-norm of Hp-solutions of x = Bx must decrease by some

uniform, nonzero amount during each period of B.
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Master equations Nonautonomous extensions of van Kampen's theorem

Another extension of van Kampen's theorem

Theorem

If A is differentiable, W-matrix-valued function such that both A and its
derivative are bounded, and the w-limit set of A contains no matrix which

is either decomposable or splitting, then probability distribution solutions
of the master equation are GAS.
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Master equations Nonautonomous extensions of van Kampen's theorem

Another extension of van Kampen's theorem

Theorem

If A is differentiable, W-matrix-valued function such that both A and its
derivative are bounded, and the w-limit set of A contains no matrix which

is either decomposable or splitting, then probability distribution solutions
of the master equation are GAS.

e Proof: if ||x(t)||1 — r > 0, then w(A) contains a decomposable or
splitting matrix
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One might conjecture...

o Let A\g, A1,..., A, be an ordering of the eigenvalues of A such that

0= Jo(t) = R(Aa(t)) > - > R(An(t))
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e In each extension, the eigenvalues A1,..., A, are not integrable
e Scalar time-dependence: A\i(t) = f(t)u1
e Asymptotically periodic: A\; approaches a nonpositive periodic function
which is negative at least once during each period
e A’ bounded: w(\1) is contains negative number, A} bounded
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Conjecture

If R(A\1) is not integrable, then all probability distribution solutions of the
master equation are (GAS).
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If R(A\1) is not integrable, then all probability distribution solutions of the
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e Recall R(A1(t)) < 0 implies % < 0 for any Hp-solution x(t)
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One might conjecture...

o Let A\g, A1,..., A, be an ordering of the eigenvalues of A such that
0=Xo(t) = R(As(t)) = -+ = R(An(1))

e In each extension, the eigenvalues A1,..., A, are not integrable
e Scalar time-dependence: A\i(t) = f(t)u1
e Asymptotically periodic: A\; approaches a nonpositive periodic function
which is negative at least once during each period
e A’ bounded: w(\1) is contains negative number, A} bounded

Conjecture

If R(A\1) is not integrable, then all probability distribution solutions of the
master equation are (GAS).

e Recall R(A1(t)) < 0 implies % < 0 for any Hp-solution x(t)
e The nonintegrability of ®(\1) “should” ensure that ||x(t)||1 — O
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Counterexample for conjecture

1 — cos(rt)

A(t) = 5 A1(t) + > Ax(t)
1 1
AR R i A
Al(t) — i 1 3 A2(t) = I 5
I “p O 0 0 -1 0
R & 0 0 0
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Master equations Conjectures and counterexamples

Counterexample for conjecture

1 — cos(rt)

A(t) = 5 A1(t) + > Ax(t)
1 1
AR R i A
Al(t) — i 1 3 A2(t) = I 5
I “p O 0 0 -1 0
R & 0 0 0

e A’ bounded, A not decomposable, splitting = A1 not integrable
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Master equations Conjectures and counterexamples

Counterexample for conjecture

1 — cos(mt 1—cos(m(t+1
A(e) = F T gy 4 2B D gy
1
-1 0 0 0 — Hp 00
|1 =z 0 o0 0 -2 10
Al =19 L 1 o AO= 5 o7 g of
0 0 &7 O 41 0 0 0

e A’ bounded, A not decomposable, splitting = A1 not integrable
o Aes = 0 = e, is stationary distribution
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e A’ bounded, A not decomposable, splitting = A1 not integrable
o Aes = 0 = e, is stationary distribution
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Converse of conjecture is false

-1 1 0 00 0
A(t) = Av tE0D). T g L A=10 -1 1
Ao, tE[L2). 0 0 0 0 1 -1
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Converse of conjecture is false

-1 1 0 00 0
A(t) = Av tE0D). T g L A=10 -1 1
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e A\i(t) =0 for all t > 0 but solutions are GAS
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New conjecture?
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New conjecture?

Theorem

If the derivative of A is bounded and the w-limit set of A contains no
matrix which is either decomposable or splitting, then probability
distribution solutions of the master equation are GAS.
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Master equations Conjectures and counterexamples

New conjecture?

Theorem

If the derivative of A is bounded and the w-limit set of A contains no
matrix which is either decomposable or splitting, then probability
distribution solutions of the master equation are GAS.

Conjecture

If the derivative of A is bounded and the w-limit set of contains at least
one matrix which is neither decomposable nor splitting, then the
probability distribution solutions of the master equation are GAS.
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Thank you!

Thanks to
o Jim Keener (Utah)
o NSF

National Science Foundation

MICHIGAN STATE Uﬁ'ﬁuveasm
NS IEVAESRESSTRTRY, OF UTAH
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