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The amazing brain

e 10! neurons

e 10 — 10,000
synapses/neuron

e regulates body, behavior
e can learn, remember

e conscious experience
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Synaptic plasticity Introduction

Neurons communicate at synapses

apical dendrites

+35 mV

spike
synapse

membrane potential, mV

-60 mV
time, ms

basal dendrites
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Synaptic plasticity Introduction

Communication at a synapse

Action potential in Ca?* entry causes Receptor-channels open,
nerve terminal vesicle fusion and Na* enters the postsynaptic
opens Ca*channels transmitter release cell and vesicles recycle

Presynaptic
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Kandel, Schwartz & Jessel (2000)
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Synaptic plasticity Introduction

Synapses can “learn” — synaptic plasticity
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Collingridge et al., Nat Rev Neurosci (2004)
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Synaptic plasticity Introduction

Synapses can “learn” — synaptic plasticity
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Collingridge et al., Nat Rev Neurosci (2004)

e LTP = long-term potentiation (strengthens synapse)

e LTD = long-term depression (weakens synapse)
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Synaptic plasticity Pre/postsynaptic mechanism

How /where does synaptic plasticity occur?

Action potential in Ca®* entry causes Receptor-channels open,
nerve terminal vesicle fusion and Na* enters the postsynaptic
opens Ca?*channels transmitter release cell and vesicles recycle
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Synaptic plasticity Pre/postsynaptic mechanism

How /where does synaptic plasticity occur?

Action potential in Ca®* entry causes Receptor-channels open,
nerve terminal vesicle fusion and Na* enters the postsynaptic
opens Ca?*channels transmitter release cell and vesicles recycle
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e Two major hypotheses:
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How /where does synaptic plasticity occur?

Action potential in Ca®* entry causes Receptor-channels open,
nerve terminal vesicle fusion and Na* enters the postsynaptic
opens Ca?*channels transmitter release cell and vesicles recycle
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e Two major hypotheses:
@ Presynaptic: change in the number of vesicles/probability of release
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Synaptic plasticity Pre/postsynaptic mechanism

How /where does synaptic plasticity occur?

Action potential in Ca®* entry causes Receptor-channels open,
nerve terminal vesicle fusion and Na* enters the postsynaptic
opens Ca?*channels transmitter release cell and vesicles recycle

Presynaptic
action potential

Presynaptic
nerve
terminal
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postsynaptic \ \ \ _ channel
potentia ﬁ B M 8 M g % ﬁ%
i Post:
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e Two major hypotheses:

@ Presynaptic: change in the number of vesicles/probability of release
@® Postsynaptic: change in the number/conductance of receptors
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Presynaptic vs. postsynaptic mechanisms

Depressed Naive Potenllaled

EEE

Depressed Naive Potentlated

FEE
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Presynaptic vs. postsynaptic debate

a b , LTP
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...long-term plasticity...is expressed overwhelmingly via
presynaptic changes in reliability of transmitter release.

—Enoki et al., Neuron (2009)

Therefore, LTP is the recruitment of new [receptors| to
synapses...

—Kerchner & Nicoll, Nat. Rev. Neurosci. (2008)
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Can modeling help?
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AMPAR trafficking and LTP/LTD October 8, 2009 9 /32



Can modeling help?

That depends on who you talk to!
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Can modeling help?

That depends on who you talk to!

Question to answer...

Can LTP/LTD data be explained by postsynaptic receptor trafficking
alone?
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AMPA receptor trafficking Outline

Outline for rest of talk

Introduce AMPA receptors
Describe AMPA receptor trafficking

e Propose model of AMPA receptor trafficking
Present results from model

Conclusions & future directions
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AMPA receptor trafficking Introduction

AMPA receptors

Long tails 41N CaMKIl, PKC PKA SAP97
¥ ¥
GluR1
GluR2L s g
GluR4 v P
* A
PKC PKA PDZ protein
Short tails NSF PKC PKC / PK?
v /% Phosphorylation site
Y
GluR2 EHVKE SAPY7 binding site
GluR3 VKL B PDZ-protein binding site
GluRdc i NSF binding site
GRIP and PICK1 binding site
GRIP, PICK1

4.1 N binding site

Huganir & Song, Nat. Rev. Neurosci. (2002)
e Responsible for excitable synaptic transmission in CNS

e Formed from four subunits: GluR1 to GluR4
e Dominant heteromers: GluR1/2 and GIuR2/3
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AMPA receptor trafficking Introduction

Excitable synapses located in dendritic spines

spine head

spine apparatus

spine neck

Matus, Science (2000)
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AMPA receptor trafficking Introduction

AMPA receptor trafficking at a spine

\20 0%/
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Model of AMPA receptor trafficking at a single spine

'\jjﬁUSion Time constants
Exo/endocytosis: 10-30 min

exgcytosis
*endocyosis e Diffusion: 10 s
e Surface area of PSD: 0.1 um?
e Surface area of spine head: 1 um?
o Diffusion coefficient: 0.01-0.1 um?/s
T e Binding/unbinding to scaffolding: unknown
v ¢ Production/degradation: unknown
» AMPA receptor Other constants
= scaffolding protein o Intracellular AMPAR number: 100-500
e AMPAR concentration in dendrite:
Cottrell et al., J. Neurophysiol. (2000) 10‘100//““2

Sorra & Harris, Hippocampus (2000)

(

(
Ehlers, N 2000 - .
passafaro et al, Mot Nemener 00y} ® Scaffolding concentration: unknown
(

Groc et al., Nat. Neurosci. (2004)
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State diagram

B
— > .
. difusion e PR <«—Ht—>u
a(z-Q)
SD oF

& ! / Spine Head
C

exgcytosis

P

endocytosis
P

Variables

l \ . P = free AMPAR concentration in PSD
a AMPA receptor Q = bound AMPAR concentration in PSD
- scaffolding protein R = AMPAR concentration in spine head
Constants

C = intracellular AMPAR number
U = AMPAR concentration in dendrite
Z = scaffolding protein concentration
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AMPA receptor trafficking Single-spine model

Model equations

dP
dt
daQ
dt
dR

PSD free:
PSD bound:

Spine head:

a2 AMPA receptor
- scaffolding protein

Earnshaw (MSU)

dt
'\j‘iﬁusion

“Endocytosis

= h(R—P) —a(Z - Q)P+ 5Q + aExog
=a(Z - Q)P -pQ

p(U—R) = h(R—P) -

G(Z Q) i
@@ . Spine Head

BAE & Bressloff, J. Neurosci. (2006)
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AMPA receptor trafficking Single-spine model

Parameter values

Known parameter values:
e Rate of exocytosis, endocytosis: oPX0 k = 1073 /s
Surface area of PSD, spine head: a = 0.1 um? A =1 pm?

Hopping rate between PSD and spine head: h =10.1/s
Hopping rate between spine head and dendrite: © = 0.005/s

® Ashby et al., J. Neurosci. (2006)
o Intracellular AMPA receptor number: C = 100
e AMPA receptor concentration in dendrite: U = 20/um?
Unknown parameter values:
e Binding/unbinding rates o and 3
e Constitutive recycling ~ 10 — 30 min = a = 3 =1073/s
e Scaffolding protein concentration Z
e Approx. half AMPARs in PSD are bound = Z = 200/pm?
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Steady-state

EXO
PSD freee  P=R+ 7 S ~193/um
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AMPA receptor trafficking Results from single-spine model

Block exo/endocytosis
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LTP simulation
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LTP simulation with increase in scaffolding

GluR2/3
GluR1/2

« Activation of GIuR1/2 intracellular pool
« Rapid insertion of receptors into ESM

* AMPARSs transport slot proteins into PSD
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AMPA receptor trafficking Results from single-spine model

LTD simulation

»‘%

PSD : ESM

« Switch from AMPA-GRIP to AMPA-PICK receptor-protein complexes

« Rapid unbinding from PSD and trafficking to ESM followed by endocytosis.
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AMPA receptor trafficking Results from single-spine model

LTD simulation with decrease in scaffolding

PSD = ESM PSD % ESM PSD H ESM

S [ |

« Switch from AMPA-GRIP to AMPA-PICK receptor-protein complexes

« Rapid unbinding from PSD and trafficking to ESM followed by endocytosis.

« Unbound scaffolding proteins are degraded.
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AMPA receptor trafficking Conclusions & future directions

Conclusions

Can LTP/LTD data be explained by postsynaptic receptor trafficking
alone?
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AMPA receptor trafficking Conclusions & future directions

Conclusions

Can LTP/LTD data be explained by postsynaptic receptor trafficking
alone?

e LTP/LTD data can be reproduced within our model of AMPA
receptor trafficking
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AMPA receptor trafficking Conclusions & future directions

Conclusions

Can LTP/LTD data be explained by postsynaptic receptor trafficking
alone?

e LTP/LTD data can be reproduced within our model of AMPA
receptor trafficking

e LTP requires increase in scaffolding (shi et al., ceir2001)
e LTD requires decrease in scaffolding (Colledge et al., Neuron 2003)
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AMPA receptor trafficking Conclusions & future directions

Future directions — AMPAR trafficking along dendrite

a receptor

- scaffolding
protein

ou 02U x=t
O = D5 — (U ~ R)
8X =0 — <“somas ax el - .

Bressloff, BAE, Ward, SIAM J Appl Math (2008)
BAE & Bressloff, J Comput Neurosci (2008)
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AMPA receptor trafficking Conclusions & future directions

Future directions — AMPAR trafficking along dendrite

Consequences of diffusive coupling

10-fold reduction in 10-fold increase in
rate of exocytosis rate of endocytosis
in gray region in gray region
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AMPA receptor trafficking

Conclusions & future directions

Future directions — AMPAR trafficking along dendrite
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Earnshaw (M

100-

75

50

25

Fast or slow recycling?

Passafaro et al., 2001

B HA/T-GIluR2
OHA/T-GIuR1

e LS
Pre Oh 075h 2h 3h

|
200 pAL
z e
"'J! 100
g
e £
- 5 8@
" g £
0 §
10 20 30 40 50 60 &
0
Time (min) o 2 4 ¢
Time after Inactivation (h)
90
80
T 70
3 60
8
£ 50
< pm e s
2 40 P
F ’
§ 30 &
2 4 —
g 20 Y 10 pm
3 K, = =300 pm
10 |#
4
902 4 6 8 1012 14 16 18 20 22 24

time [hr]

AMPAR trafficking and LTP/LTD

h16h

8 10 12 14 16

Adesnik et al., 2005

Pre ANQX + UV

Post (1h)
Post (6 h)

Post (16 h)

10pAL
s

October 8, 2009

27 / 32



AN/ IRAWEIS TR IEYTN -8 Conclusions & future directions

Future directions — stochastic models

dp
5= AZ—qp+Bg—ppto

dq
5~ Z—ap—Faq
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a AMPA receptor
- scaffolding protein

Bressloff & BAE: Biophys J (2009)
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AMPA receptor trafficking

Future directions — stochastic models

db _

5= NZ—aqp+Pg—ppto

dg

Pn.m(t) = Prob{n unbound, m bound at time t}

Earnshaw (MSU)

7 = Z—ap—Faq

AMPAR trafficking and LTP/LTD

Conclusions & future directions

a AMPA receptor
- scaffolding protein

Bressloff & BAE: Biophys J (2009)
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AN/ IRAWEIS TR IEYTN -8 Conclusions & future directions

Future directions — stochastic models

dp
5= AZ—qp+Bg—ppto

dq
5~ Z—ap—Faq

Pn.m(t) = Prob{n unbound, m bound at time t}

dPp.m
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Bressloff & BAE: Biophys J (2009)
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AN/ IRAWEIS TR IEYTN -8 Conclusions & future directions

Future directions — stochastic models

dp
5= AZ—qp+Bg—ppto

dq
5~ Z—ap—Faq

Pn.m(t) = Prob{n unbound, m bound at time t}
dPp.m
d—t’ = UPn—l,m + M(n + 1)Pn+1,m
+a(n+ DIZ = (m— DlPasrms
+ B(m+1)Py_1 mt1
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Future directions — stochastic models

AMPA receptor trafficking

Conclusions & future directions
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AN/ IRAWEIS TR IEYTN -8 Conclusions & future directions

Future directions — trafficking of other proteins

140-Pre

S GEPCaMIHE

Rose et al., Neuron (2009)
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Future directions — trafficking of other proteins
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Thank you!
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