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ABSTRACT

EXTERIOR BLOCKS AND REFLEXIVE NONCROSSING PARTITIONS

Berton Allen Earnshaw
Department of Mathematics

Master of Science

This thesis defines an exterior block of a noncrossing partition, then gives a formula

for the number of noncrossing partitions of the set {1,2,...,n} with k exterior blocks,

E 2n—k—1
n kE—1 '

Certain identities involving Catalan numbers are derived from this formula. A formula

which is

for the number of noncrossing partitions fixed by the reflection of the dihedral group

(1)

is also derived, which is

the nth central binomial coefficient.
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1 Introduction

In 1972 [13], Kreweras introduced mathematics to noncrossing partitions; that is, a
partition 7 of the set [n] := {1,2,...,n} such that whenever 0 <a<b<c<d<n

and a and c are in the same block of 7 and b and d are in the same block of 7, then ac-



tually a, b, c and d are all in the same block of 7 (this is the standard definition equiva-
lent, but not equal, to Kreweras’ original). The collection of noncrossing partitions of
[n] is denoted by NC,,. We typically write noncrossing partitions using a ’/’ to delimit
the blocks of the partition and a ’,” to delimit the elements within each block. For
example, the partition 7 = {{1,4,6},{2,3},{5},{7},{8,10},{9},{11,12}} € NCy,
is typically written 7 = 1,4,6/2,3/5/7/8,10/9/11,12. Notice that we have written
the blocks in ascending order of their least element. Noncrossing partitions can be
conveniently visualized in their linear or circular representations. For the linear rep-
resentation, we place n nodes 1,2,...,n on a line, and indicate that two elements are
in the same block by drawing an arc in the upper-half plane connecting the two. For
the circular representation, we place n nodes 1,2,...,n on a circle, and indicate that
two elements are in the same block by drawing a line segment in the interior of the
circle connecting the two. Figures 1 and 2 give the linear and circular representations,
respectively, of 1,4,6/2,3/5/7/8,10/9/11,12. Throughout this paper we will make

use of both representations.
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Figure 1: Linear representation of 1,4,6/2,3/5/7/8,10/9/11, 12
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Figure 2: Circular representation of 1,4,6/2,3/5/7/8,10/9/11,12




Since Kreweras’ paper, noncrossing partitions have been studied extensively in a
variety of fields. For definitions not given in the discussion that follows, refer to [1]
and [17]. It is well-known that NC,,, ordered by refinement (that is, 7 < ¢ in NC,, if
for every block B € 7 there exists a block C' € o such that B C (), forms a graded
lattice with rank function rk(7) = n—|x| (of course, || denotes the number of blocks
of 7), and that INC,| = C,, where C,, = #1(2:) is the nth Catalan number [13].
The number of noncrossing partitions of [n] of rank k, which is to ask for the number
of noncrossing partitions with n — & blocks, is %(nﬁk) (n_z_l) [6]. NC, possesses an

infimum 0 = 1/2/--- /n and a supremum 1 = 1,2,...,n and its Mdbius function is
p(NCp) = pinc, (0,1) = (=1)""'Cpa

[13] [8]. Many chain and multichain enumerations have been formulated, including

its zeta polynomial

1/ mn
ney(m) = n (n — 1)

[13] [6] [7] [8]. It is known that NC,, is rank unimodal, rank symmetric, self-dual
and admits a symmetric chain decomposition [15]. NC,, admits various R-labelings
[4] [8], which have been used to characterize all parking functions, which in turn
defines a local action of the symmetric group on NC,, [18]. The idea of a noncrossing
partition has been generalized [14] and used to study classical reflection groups [3].
Noncrossing partitions are intimately connected with binary trees [12] and meanders
[9] [10]. Recently, noncrossing partitions have been used to study stationary stochastic
processes with freely independent increments [2].

So what possibly could there be left to study about noncrossing partitions? Con-
sider the “easy” [15] problem of proving by induction that [NC,| = C,,. It seems to
require the number of ways the singleton {n + 1} can be connected to a noncrossing

partition 7 € NC, to get a noncrossing partition 7’ € NC,,,. Figures 3, 4, 5, 6

and 7 illustrate an example of this problem for n = 7 and = = 1,2/3/4,7/5,6. We



can certainly add the singleton {8} to 7 to form «' = 7 U {{8}} = 1,2/3/4,7/5,6/8
as in Figure 3. We could also add it to the block {1,2} of 7 to get 7’ = (7 \
{{1,2}}) U {{1,2,8}} = 1,2,8/3/4,7/5,6 as in Figure 4; to the block {3} to get
= (r\{{3}})U{{3,8}} =1,2/3,8/4,7/5,6 as in Figure 5; and to the block {4, 7}
toget 7' = (m\ {{4,7}}) U {{4,7,8}} =1,2/3/4,7,8/5,6 as in Figure 6. If we add
{8} to the block {5,6}, we get 7' = (7 \ {{5,6}}) U {{5,6,8}} =1,2/3/4,7/5,6,8,
which is not a noncrossing partition (see Figure 7).

What is peculiar about the block {5,6}? Why does adding the singleton {8} to it
form a crossing partition? It is the fact that the block {5,6} is “nested in” the block
{4,7}. None of the other blocks of 7 are “nested in” blocks of 7 in this way. Notice
that there are four distinct ways of adding {8} to 7 to get «": one for each of the

“unnested” blocks of 7 plus the case of adding {8} as singleton to 7.

— (>3 A58
Figure 3: Linear representation of 1,2/3/4,7/5,6/8

Figure 4: Linear representation of 1,2,8/3/4,7/5,6
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Figure 5: Linear representation of 1,2/3,8/4,7/5,6

Consider a different problem. The dihedral group Ds, acts on the lattice NC,

in a natural way (see Section 5 for details). We think of Dy, as being generated by
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Figure 6: Linear representation of 1,2/3/4,7,8/5,6
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Figure 7: Linear representation of 1,2/3/4,7,8/5,6

the rotation element r = (1,2,...,n) and the reflection element s = (2,7n)(3,n —
1)---([n/2],n — [n/2] + 2). What is this action like? Given any 7 € NC,,, what is
the orbit of 7 under the action Ds,? How big is this orbit?

Let us consider the noncrossing partition 7 = 1/2,4,7,9/3/5/6/8, which is fixed
by the action of the reflection s (see Figure 8; notice that 7 is symmetric about the
dotted line). Notice that 7 can be constructed by reflecting the noncrossing partition
B = 1/2,4/3/5 through the dotted line (see Figure 9) and then joining the block
{2,4} to its reflection {7,9}. Notice that in a similar way we could decide to connect
the block {5} to its reflection (see Figure 10), or connect both the blocks {2,4} and
{5} to their respective reflections (see Figure 11) to get a noncrossing partition fixed
by the reflection s (the reflection of the block {1} of 7 is simply {1}, so we get nothing
new by connecting it to its reflection). However, if we try to connect the block {3}
to its reflection, we get a crossing partition (see Figure 12).

Why is the block {3} different from the other blocks of 5?7 Again, the block {3}
is “nested in” the block {2, 4}, while the other blocks of 5 are not “nested in” any
other block of 5. Notice that we constructed four distinct noncrossing partitions of
[9], all fixed by the reflection s € Dig, from the noncrossing partition 3: we had the
choice to either connect or not connect the two “unnested” blocks of S with their

reflections.



Figure 8: Circular representation of 1/2,4,7,9/3/5/6/8
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Figure 9: Circular representation of 1/2,4/3/5/6/7,9/8
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Figure 10: Circular representation of 1/2,4/3/5,6/7,9/8

Figure 11: Circular representation of 1/2,4,7,9/3/5,6/8



Figure 12: Circular representation of 1/2,4/3,8/5/6/7,9

It seems that if we are to count the number of noncrossing partitions of [n| fixed
by the reflection s € Dy, or to build up NC,; from NC,,, or solve any other problem
dependent on the “nestedness” of the blocks of our noncrossing partitions, we will

need to define and understand this concept of “nested” blocks.

2 Exterior Blocks

For ease of discussion we give a preliminary defintion. Given a block B € 7, we will
denote the least and greatest elements of B by first(B) and last(B), respectively, and

will call them the first and last elements of B, respectively.

Definition 2.1. Let 7 € NC,,. A block B € 7 is an interior block of m if there exists

a block C' € 7 such that first(C) < first(B) < last(B) < last(C). If B is not an

interior block, then it is an exterior block of 7.

Intuitively, given a noncrossing partition 7 of [n], an interior block of 7 is one
which is nested inside another block in the linear representation of 7. An exterior
block of 7 is one which is not nested in any other block. Consider Figure 1 which
is the linear representation of m# = 1,4,6/2,3/5/7/8,10/9/11,12 € NCi,. It is easy
to see that {2,3},{5} and {9} are the interior blocks of 7, while {1,4, 6}, {7}, {8.10}
and {11, 12} are the exterior blocks of 7.

We now present a few preliminary results concerning exterior blocks.



Propostion 2.1. Let 1 € NC,,. The blocks of m containing the elements 1 and n are

always exterior blocks.

Proof. Let A be the block of 7 containing the element 1 and B the block containing
n. There is no block of m whose first element is less than first(4) = 1, thus, by
definition, A is an exterior block of 7. Similarly, B is an exterior block since there is

no block of m whose last element is greater than last(B) = n. O
Corollary 2.1. Every noncrossing partition of [n] has at least one exterior block.

Proof. This result follows immediately from Propostion 2.1 since every noncrossing

partition of [n] has 1 as an element. O

Propostion 2.2. Let 1 € NC,,. m has one exterior block if and only if the elements

1 and n are in the same block.

Proof. (=) Suppose 7 has only one exterior block. If the elements 1 and n are not
contained in the same block, then by Proposition 2.1 7 has at least two exterior
blocks, a contradiction. Therefore 1 and n must be in the same block.

(<) Suppose 1 and n are in the same block B of w. Then every other block A € 7

is an interior block of 7 since
1 = first(B) < first(A) < last(A) < last(B) = n.

Therefore, B is the only exterior block of . O

3 The Function ext(n, k)

Let Ext,, ; be the subset of NC,, consisting of all noncrossing partitions of [n] with &k
exterior blocks and define

ext(n, k) = |Exty k|

so that ext(n, k) counts the number of noncrossing partitions of [n] with &k exterior

blocks. What sort of function is ext(n, k)?



Propostion 3.1. ext(n, k) = 0 whenever k =0 or k > n.

Proof. 1f k = 0, we are asking how many noncrossing partitions of [n] have no exterior
blocks. By Corollary 2.1 we know that there are no such noncrossing partitions. Thus
ext(n,0) = 0.

Since any partition of [n] can have at most n blocks, it can have at most n exterior

blocks. So if k > n, ext(n, k) = 0. O
Propostion 3.2. ext(n, k) > 0 whenever k € [n].

Proof. Given k € [n], the noncrossing partition 1/2/---/k —1/k,k+1,...,n has k

exterior blocks (see Figure 13). Therefore ext(n, k) > 0. O

1—2——k—1—k—k+1——n
Figure 13: Linear representation of 1/2/---/k —1/k,k+1,....n

Propostion 3.3. ext(n,n) = 1.

Proof. The only noncrossing partition of [n] having n blocks is the infimum 0=
1/2/ -+ /n of the lattice NC,,. Notice that each singleton of 0 is indeed an exterior

block of 0, so ext(n,n) = 1. O
Propostion 3.4. ext(n,n —1) =n—1.

Proof. If a noncrossing partition 7 of [n] has n — 1 exterior blocks, then its blocks
must all be singletons except for one block containing two consecutive elements; that
is,

n=1/---Ji—1/i,i+1/i+2/---/n
for some i € [n — 1] (see Figure 14). There are as many such noncrossing partitions

as there are choices of ¢, which number is n — 1. Therefore, ext(n,n—1) =n—1. O



1 2 o=t —1—¢—t+1-14+2— - —n—

Figure 14: Linear representation of 1/--- /i — 1/i,i+1/i+2/---/n
Theorem 3.1. ext(n, 1) = Cn_y, where Cp = 15 (") is the nth Catalan number.

Proof. We already know from Propostion 3.3 that ext(1,1) = 1 = C,. Assume
n > 1. By Proposition 2.2, a noncrossing partition 7 of [n| with one exterior block

necessarily has 1 and n in the same block. Call this block B (see Figure 15, where
n=6m=1,4,6/23/5and B = {1,4,6}). The partition

m' = (m\{B}) U{B\ {n}}

is then a noncrossing partition of [n — 1] (7 is simply = with the element n removed;
see Figure 16). Define a map ¢ : Ext,, ; — NC,_; by the above operation 7 — 7.

The map ¢ is clearly invertible, with inverse map ¢~ given by

¢ (o) = (e \{Ahu{AU{n}}

where 0 € NC,,_; and A is the block of ¢ containing the element 1 (see Figures 17
and 18, where n = 6, 0 = 1,2/3/4,5 and A = {1,2}). Therefore ¢ is a bijection,
proving

ext(n,1) = |Ext, 1| = INCp,_1| = Cp,_1.

[ ;4_5_%_

Figure 15: Linear representation of 7 = 1,4,6/2,3/5 € Extg

So far we have only given the value of ext(n, k) for particular values of k. We now

prove a recurrence relation involving ext(n, k).



§
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Figure 16: Linear representation of 7’ = ¢(7) =1,4/2,3/5 € Exts

—>» 3 4 3

Figure 17: Linear representation of o = 1,2/3/4,5 € Exts 3

Theorem 3.2. ext(n, k) =ext(n — 1,k — 1) +ext(n,k +1) forn>2 and k > 1.

Proof. Clearly ext(n — 1,k — 1) counts the number of noncrossing partitions = of
Ext,, x having the singleton {n} as a block since 7\ {n} € Ext,,_1 y—_1. Thus we want
to show that ext(n, k + 1) counts the number of noncrossing partitions of Ext,, ; that
do not have {n} as a block. Let Ext, , be that set.

If £ € [n — 1] then by the example in Proposition 3.2 there exists a noncrossing
partition with k exterior blocks whose block containing n is not a singleton. Thus if
Ext;l,k is empty, then necessarily & > n. But then ext(n,k + 1) = 0 by Propostion

3.1 and we are done.

'
n,k?

If Ex‘c;’,C is not empty, then for any m € Ext, ., let B be the block of 7 containing

n and let

m' = (r\{B}) U{B\{n},{n}}
(see Figures 19 and 20, where n = 6, £k = 2, 7 = 1,2/3,4,6/5 and B = {3,4,6}).
Now 7’ is a noncrossing partition of [n] with more than k exterior blocks. Let C be

the block of 7’ just to the right of B \ {n} in the linear representation of «’; that is,

1—4; S T

Figure 18: Linear representation of ¢~'(0) = 1,2,6/3/4,5 € Exte




last(B \ {n}) + 1 = first(C) (B \ {6} = {3,4} and C = {5} in Figure 20). Let

m' = (m\{C,{n}}) U{C U {n}}

(see Figure 21). Now 7" € Exty s11. Define a map ¢ : Ext, , — Ext, x11 by the above

operation 7 — 7”. The map 4 is clearly invertible with inverse map ~! given by

Y7Ho) = (e \ {4} U{DU{n}, A\ {n}}

where o € Ext,, ;41 and A is the block of ¢ containing n and D is the block of ¢ just
to the left of A in the linear representation of o; that is, last(D) + 1 = first(A) (see
Figures 22 and 23, wheren =6,k = 2,0 =1,2/3/4,5,6, A = {4,5,6} and D = {3}).

Therefore, 1 is a bijection and
|Extl, | = [Extn 1] = ext(n, k + 1).

We have proven the desired recurrence. O

>4t —5—6—

Figure 19: Linear representation of 7 = 1,2/3,4,6/5 € Extg,

4§ 56—
Figure 20: Linear representation of 7' =1,2/3,4/5/6 € Extg 4
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J v

Figure 21: Linear representation of 7" = (7w) =1,2/3,4/5,6 € Extg 3

This recurrence relations allows us to write out a table of values for ext(n, k)

(see Figure 24). Notice that the values of the first two columns of this table come



Figure 22: Linear representation of o = 1,2/3/4,5,6 € Extg 3
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Figure 23: Linear representation of /" (0) = 1,2/3,6/4,5 € Extg,

\k|O 1 2 3 4 3 6 7 | 81910 | Total
1 0 1 0 0 0 0 0 0 0|00 1

2 0 1 1 0 0 0 0 0 0|00 2

3 0] 2 2 1 0 0 0 01000 )

4 0] o ) 3 1 0 0 01000 14

5 0] 14 14 9 4 1 0 01000 42

6 0] 42 42 28 14 3 1 0 ]0]0|O0 132
7 10| 132 | 132 | 90 48 20 6 1 010 0| 429
8 0| 429 | 429 | 297 | 165 o127 7T (1100 | 1430
9 0 | 1430 | 1430 | 1001 | 572 | 275 | 110 | 35 | 8 |1 | O | 4862
10 | 0| 4862 | 4862 | 3432 | 2002 | 1001 | 429 | 154 |44 | 9| 1 | 16796

Figure 24: Table of values of ext(n, k)




from Proposition 3.1 and Theorem 3.1, while the rest of the values come from the
recurrence relation written as ext(n,k + 1) = ext(n, k) —ext(n — 1,k — 1).

Catalan numbers abound in this table. Notice that the second and third columns
(corresponding to £ = 1 and k£ = 2) contain Catalan numbers. The first column is, of
course, given to us by Theorem 3.1. When k£ = 2 and n > 2, the recurrence relation

plus Proposition 3.1 shows us that
ext(n,2) = ext(n,1) —ext(n —1,0) = Cp,_1 — 0 = Cy_;.
Notice that the nth row adds up to C,. This is clear since the sets

Ext, 1, Ext, o, ..., Ext,,

’

partition NC,; that is, the sets are pairwise disjoint and NC,, = Up_,Ext, ;. This

fact gives
Cn, = INC,,| = |Up_ Exty x| = Ep_q|Exty, x| = Xf_ext(n, k). (3.1)

Also notice the strong resemblance of this table with the various formulations of
Catalan’s triangle (cf. [11], also sequences A053121, A008315, etc. in [16]). Figure 25
is a typical Catalan triangle. It is also called a Pascal semi-triangle since if w(n, k)
represents the value in the nth row and kth column of this table, then for n > 1 and

k > 1, w(n, k) satisfies the recurrence relation
w(n, k) =wn—1,k—1)+wn—1,k+1).

Notice that the diagonals w(2n,0),w(2n — 1,1),...,w(n,n) of this triangle are the
rows ext(n + 1,1),ext(n+1,2),...,ext(n+ 1,n + 1) in Figure 24.

We are now ready to give a closed formula for ext(n, k).

Theorem 3.3. ext(n, k) = %(2"_’“_1).

n—1



n\k| 0| 1|2 |3]4|5]6]|7|8|9]|10| Total
0 1107070100 [0|0]0]0]O0 1
1 0140100 0]0]010]O0O|0O0 1
2 11017000 [0|0]0|0]O0 2
3 0(2(0(1)0]0]0]0(0]0|0O0 3
4 21013101 (0]01}0]0]0]O0 6
3 0/5(0(4)0]1]0]0(0]0|0O0 10
6 21019101501 }0]0]0]O0 20
7 0 (140 (140 |6 |0 |1]0]0]O0 35
8 14,0 (28,0200 |7 |011]0]0 70
9 0 (420 (48] 0 (27| 0 |8|0]|1| 0 | 126
10 4210 (9]0 |70 |35]0]9|0| 1| 252

Figure 25: A Catalan Triangle

Proof. Let f(n,k) = £(***71). Notice that if k = 0 then

n—1

fn,0) =2 (2” N 1) = 0 = ext(n, 0)

n\n—1

and if £ = 1 then

n\n—1

1/2n—2
f(n,l)z—( " >=Cn_1=ext(n,1)
andif k >nthen2n -k —-1<2n—n—1=n—1 so that

k(2n—k—1 k
f(n,k)—ﬁ( 01 )—E-O—O—ext(n,k)

if we follow the convention that (}) = 0 whenever b > a. Hence f(n, k) satisfies the

initial conditions of Proposition 3.1 and Theorem 3.1. It remains to show that this

formula satisfies the recurrence relation

f(n,k)=f(n—1,k—=1)+ f(n,k+1);

that is,
%(an_—k; 1) _ % (2(n —(;)_—1()/1—11) - 1) L : 1 <2n - glkjf) - 1)

_k—l 2n—k —2 +k+1 2n—k—2
T on—1 n—2 n n—1



for n > 2 and k£ > 1. Here we go:

f(n—l,k—1)+f(n’k+1):k_1<2n_k_2>+k+1<2n_k_2>

n—1 n—2 n n—1
_k—=1(2n—k -2 k+1(2n—k—2
_n—1< n—2 >+ n ( n—1 )
k-1 (2n—Fk—2)!
n—1 (n—2)(n—k)

k+1 (2n — k —2)!

n (n—Dn—k—1)
_n(k—=1)(2n—k —2)!

n!(n —k)!
n—k)(k+1)2n—k —2)!
+( )(n'(n)—(k)' :
_ (nk—=n)(2n -k —2)!
B nl(n — k)!
nk+n—k*—k)(2n—k— 2)!
+( n!(n—)l(c)! :
_ (2nk -k —k)(2n -k —2)!
B nl(n — k)!
_k 2n—-k-1)2n—k—2)!
T n (n—1)(n—k)!
_k (@2n-k-1)

“n (n—=1)(n—-k)
:E<2n—k—1> — k).

n n—1

Therefore, ext(n, k) = f(n, k) = %(Qn—k—l). -

n—1

4 Catalan Identities

2n—k—1

o ) of Theorem 3.3, we can derive some iden-

Using the formulation ext(n, k) = £ (
tities involving Catalan numbers. The first comes by replacing ext(n, k) in Equation
3.1 by this formula:

Cn:Zext(n,k)z %( nn_kl )

k=1 k=1

The second identity comes in response to the question posed at the beginning of

this paper regarding a proof by induction of the fact |NC,| = C, (see Section 1).



There we asked the number of ways the element n+ 1 can be added to a noncrossing
partition 7 of [n] to get a noncrossing partition 7’ of [n + 1], and concluded that if 7
has k exterior blocks, then there are £+ 1 ways to form the new noncrossing partition
7', Since there are ext(n, k) noncrossing partitions of [n] with & exterior blocks, there
are a total of (k + 1)ext(n, k) noncrossing partitions of [n + 1] gotten in this way.

Summing these formulae over the possible number of exterior blocks gives

. “~k(k+1)[(2n—k—1
o = NG| = D (b + Vet ) = 3o HEED (21 7R 21,

k=1 k=1

5 The Action of the Dihedral Group Ds, on the
Lattice NC,,

The dihedral group D,, acts in a natural way on the lattice NC,,. We typically present
the dihedral group as Do, = (r,s | r", s%,rsrs), and call the generator r the rotation
in Dy, and the generator s the reflection in Dy,. Considered as a subgroup of the
symmetric group on n letters, the generators are typically written » = (1,2,...,n)
and s = (2,n)(3,n—1)---([n/2],n — [n/2] + 2) [5].

A group action of a group G on a set Ais amap -: G x A — A (where -(g,a) is
typically written g - a, or even ga) such that for all g;, g> € G and a € A the following

two properties hold:
1. g1-(g92-a) = (g192) - a, and
2. 1-a=a (1 is the identity element of G).

It follows from Property (1) that the action of any group G on a set A is determined
by the action of the generators of G on the set A [5].

The group D»,, acts on the lattice NC,, by simply permuting the elements 1,2,...,n
of the blocks of any noncrossing partition 7 € NC,,. For instance, if n = 5 and

m=1,3/2/4,5 € NCs, then r = (1,2,3,4,5), s = (2,5)(3,4) and

7‘-71':(1,2,3,4,5)'1,3/2/4,521,5/2,4/3€NC5



Figure 27: Circular representation of r -7 =1,5/2,4/3

and

s-m=(2,5)(3,4) - 1,3/2/4,5=1,4/2,3/5 € NCs.

Figures 26, 27 and 28 illustrate these examples (the dotted line represents the axis
in which the generator s reflects 7). It is easily seen that the actions of 7 and s on
7 do not change the block structure (that is, the number and size of each block, the
block adjacencies, etc.) of 7; they simply rotate or reflect it. This fact is true for the
actions of 7 and s on any noncrossing partition of [n].

An interesting property of the action of Dy, on NC, is that it is rank- and order-
preserving. To say that the action is rank-preserving means that for any 7 € NC,
and d € Dy, tk(m) = rk(d - 7). To say that the action is order-preserving means that
if # < o for any 0 € NC,,, then d -7 < d- 0. This follows immediately from the fact
that the action is does not change the block structure of a noncrossing partition.

Because the action is rank-preserving and the height of NC,, is n—1 (that is, there



Figure 28: Circular representation of s -7 =1,4/2,3/5

are n distinct ranks), when n > 1 this action is not transitive; that is, there is more
than one orbit of this action. We are thus led to ask about the number and size of

the orbits of this action.

6 Reflexive Noncrossing Partitions

In this paper we will only consider the orbits of NC,, under the action of the subgroup
(s) of Ds,; that is, we will consider which noncrossing partitions of [n] are fixed by s.
We will call any noncrossing partition fixed by the reflection s a reflexive noncrossing
partition. The number of reflexive noncrossing partitions of [n] will be denoted by
s(n).

The discussion will be divided into two cases: one in case n is odd, and the other
in case n is even. We will begin with the case n = 2m + 1 is odd. If n = 1, then NC;
contains only one noncrossing partition, namely 1, which is clearly reflexive. Assume
n > 1. We will show how to construct the reflexive noncrossing partitions of [n].

Since n > 1, it follows that mm > 1, and in the circular representation of any
noncrossing partition of [n] there are m places labelled 2,3, ..., m + 1 on one side of
the axis of reflection (see Figure 29). In these m places we can put a noncrossing
partition 8 of [2,m + 1] = {2,3,...,m + 1} with k exterior blocks (see Figure 30).
Now, we add the singleton {1} to 8 by simply adding the block or by adding it to any

one of the exterior blocks of 5 to get a new noncrossing partition 8’ of [m + 1] with



m+1\\\

N

\ N 2m+1

N/

\2—/1

Figure 29: The circular representation of any noncrossing partition of [n], where
n=2m+ 1> 1, has m places 2,3,...,m + 1 on one side of the axis of reflection

Figure 30: Circular representation with n =7, m =3 and 5 = 2,3/4

k' < k41 exterior blocks (see Figure 31). We then reflect 5’ in the axis of reflection
to get a reflexive noncrossing partition 7 € NC,, (see Figure 32). We can form more
reflexive noncrossing partitions from 3’ by choosing to connect the exterior blocks of
B’ not containing 1 with their respective reflections (see Figure 33).

There are ext(m, k) ways to choose 5. If we do not connect {1} to any of the
exterior blocks of 3, then ' has k' = k+1 exterior blocks, so that there are 25 ~1 = 2%
ways to construct a reflexive noncrossing partition of [n] from £’. Hence in this way
we can construct 2Fext(m, k) reflexive noncrossing partitions of [n].

If we connect {1} to the first exterior block of 3, then ' has k' = k exterior blocks,
so that there are 2¥~! = 25~! ways to construct a reflexive noncrossing partition of
[n] from . Hence in this way we can construct 2% lext(m, k) reflexive noncrossing

partitions of [n].



Figure 31: Circular representation with n =7, m = 3, and ' = 1,2,3/4

Figure 32: Circular representation of the reflection of 8’ = 1,2,3/4 through the axis
of reflection, giving 7 = 1,2,3,6,7/4/5

Figure 33: Circular representation of the reflection of 8’ = 1,2,3/4 through the
axis of reflection and connecting the block {4} with its reflection {5}, giving 7 =
1,2,3,6,7/4,5



In general, if we connect {1} to the jth exterior block of 8, §' has k' = k —
j + 1 exterior blocks, so that there are 2¥=7+1~1 = 2¥=J ways to construct a reflexive
noncrossing partition of [n] from 3’. Hence in this way we can construct 2% Jext(m, k)
reflexive noncrossing partitions of [n]. Summing the expression 2f~7ext(m, k) from
j =0to k (j = 0 corresponds to the case where {1} is not connected to any of the
exterior blocks of 3') gives

k
ZQk_jext(m, k) = (2" — 1)ext(m, k)

=0
ways to construct reflexive noncrossing partitions of [n] from noncrossing partitions of
m having k exterior blocks. If we now sum this expression over the possible number

of exterior blocks we get a formula for s(n) when n > 1 is odd:

s(n) =

(281 — 1)ext(m, k)

NE

ES
Il

1

I
NE

2k lext(m, k) — Z ext(m, k)
k=1

1

2kt fom — k — 1
B
k:lm m—1

= 4(2m — 1)Cm71 - Cm

- (m; 1) - (Ln72J>

This is the nth central binomial coefficient. Notice that (LL) =1 = s(1), so the

3T

formula holds for n =1 as well.

We now consider the case when n = 2m is even. If n = 2, then there are two
noncrossing partitions of [2], namely 1,2 and 1/2, both of which are clearly reflexive.
Assume n > 2. Then m > 1, and in the circular representation of any noncrossing
partition of [n] there will be m —1 places labelled 2, 3, ..., m on one side of the axis of
reflection (see Figure 34). If we ignore the place m+1, then we are in the case studied

above, namely counting the number of reflexive noncrossing partitions of [n — 1], of



m 4?\1 ..
N \
m 2m
\. . 1 /
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Figure 34: The circular representation of any noncrossing partition of [n], where
n =2m > 2, has m — 1 places 2,3, ..., m on one side of the axis of reflection

which there are

== (|0 yar) = () (61)

Notice that {m + 1} is a singleton in each of noncrossing partitions counted here.

If we ignore the place 1, then we are again in the same case. As with the case of
ignoring the place m + 1, all the noncrossing partitions that we will count now will
have {1} as a singleton block. Notice that we have already counted all those reflexive
noncrossing partitions that have both {1} and {m+1} as singleton blocks. So to avoid
double-counting, we must avoid constructing them. If we put a noncrossing partition
having k exterior blocks into the m — 1 places 2,3,...,m, then by the procedure

described above we can construct

k
3 2 ext(m — 1, k) = (2" — 1)ext(m — 1, k)
j=0

reflexive noncrossing partitions from it. Remember that the index j represents the
position of the exterior block to which we are connecting the block {m + 1}, and that
j = 0 represents no connection to the block {m + 1}. This is the case we want to
eliminate to avoid double-counting, so we simply subtract 2%ext(m — 1,k) from the

sum above (which amounts to starting the sum at j = 1) to get

k
D 2 ext(m — 1,k) = (28 — 1)ext(m — 1, k)
j=1



more reflexive noncrossing partitions of [n]. Summing this number over the possible

number of exterior blocks gives

m—1 m—1 m—1
(2% = Vext(m — 1,k) = Y 2¥ext(m — 1,k) = > ext(m —1,k)
k=1 k=1 k=1
m—1
= 2Fext(m — 1,k) — Cpy
k=1

m—1
1
k+1 . - =
( 2 eXt Lk) le) 2 m—1 (62)

l\oln—\ l\DIn—\NJIr—* [\:Jlr—t

( nn—_11/2j) %Cm‘l
~3(n20) -3

What do we have left to count? We have not considered those reflexive noncrossing
partitions which have 1 and m + 1 in the same block. How do we count these? If we
put a noncrossing partition with &k exterior blocks into the m — 1 places (see Figure
35), we have a choice to connect or not connect each of the exterior blocks one at
a time to the block {1,m + 1} (see Figure 36), and then reflect that in the axis of
reflection (see Figure 37). We connect the exterior blocks one at a time to avoid
double-counting. This is completely analogous to the situation discussed earlier of

building up the noncrossing partitions of [m] from those of [m — 1]. Thus there are
Cm (6.3)

such reflexive noncrossing partitions.

Now what is left to count? The only reflexive noncrossing partitions we have not
yet counted are those which do not have 1 and m + 1 in singleton blocks or in the
same block. Again, we begin by putting a noncrossing partition 5 with k exterior
blocks into the m — 1 places. If we add 1 to the first exterior block of 3, then we have

the choice of adding m + 1 to any of the other exterior blocks of 5. If we add it to



7
4 8
3 1
\2 -
Figure 35: Circular representation with n = 8, m = 4, £k = 2 and noncrossing
partition § = 2,3/4
NG
3 1
\2 -

Figure 36: Circular representation adding the block {4} of § to the block {1,5} to
get ' =1,4,5/2,3

4 \
3 , /‘1

/8

Figure 37: Circular representation reflecting ' in the axis of reflection to get 7 =
1,4,5,6/2,3/7,8



the second, then we now have a noncrossing partition 5’ of [m + 1] with two exterior
blocks. We then reflect 5 in the axis of reflection to get a reflexive noncrossing
partition 7 of [n]. Connecting the exterior blocks of 5’ to there reflections gives the
same noncrossing partition 7 since both contain either 1 or m + 1. Thus there are
as many of these reflexive noncrossing partitions as there are choices of 3, which is
ext(m — 1, k).

If we instead add m + 1 to the third exterior block of 3 to get 8’ and then reflect
B in the axis of reflection, we get a reflexive noncrossing partition 7 of [n]. Notice
that ' has three exterior blocks, and if we decide to connect the second exterior
block of ' with its reflection we get another reflexive noncrossing partition 7 of [n].
Thus there are 2 reflexive noncrossing partitions that can be constructed from £ in
this way. There are ext(m — 1, k) choices for (3, so there are 2ext(m — 1, k) reflexive
noncrossing partitions constructed in this way.

In general, if we put a noncrossing partition with £ exterior blocks into the m — 1
places, and if we add 1 to the first exterior block and m + 1 to the ¢th exterior block,
where 7 > 1, we can construct 2°~2 reflexive noncrossing partitions of [n] from it.
There are ext(m—1, k) choices for the original partition, so there are 2'~2ext(m—1, k)
reflexive noncrossing partitions that can be constructed in this way. Adding all these

possibilities together, we get

k k—2
Z 2 %ext(m — 1,k) = Z 2ext(m — 1, k)
=2 i=0

reflexive noncrossing partitions of [n].

If we instead add 1 to the jth exterior block of 3, we can only add m + 1 to the
1th exterior block of g if ¢ > j, else we will have a crossing partition if 7 < j, or
a noncrossing partition we have already counted if i = j (since then 1 and m + 1
would be in the same block). As above, there will be 2¢79~! ways to get a reflexive a
noncrossing partition of [n] from £, and there are ext(m — 1, k) choices for g, so there

are 2077~ text(m — 1, k) reflexive noncrossing partitions of [n] constructed in this way.



Adding all these possibilities together, we get

k k—j—1
> 2 ext(m — Lk)= Y 2ext(m—1,k)
i=j+1 i=0

reflexive noncrossing partitions of [rn]. So the number of all of the reflexive noncrossing
partitions of [n] that can be constructed in this way from noncrossing partitions with

k exterior blocks put into the m — 1 places is

k—1k—j—1 k—2 k—j—2
Y Zext(m—1,k) =) > 2ext(m—1,k)
j=1 =0 7j=0 =0
k-2 j
= ZZQiext(m —1,k)
j=0 i=0
k—2
= (2 —1)ext(m — 1, k)
§j=0
k—2 k—2
= [Z o+t _ 1] ext(m — 1, k)
7=0 7=0

If we now sum this expression over the possible number of exterior blocks we get

m—1k-2 j m—1
D ext(m—1,k) = (28 —k — )ext(m — 1,k)
k=1 j=0 2=0 k=1
m—1 m—1
=Y 2Pext(m —1,k) = > (k+1)ext(m — 1,k)
k=1 =1
m—1
=Y 2%ext(m —1,k) — Cp,
k=1
1= 1
_ k+1
_5212 ext(m —1,k) — 20m1+ le Cm
1
= §s(n —-1)+ —Cm_1 —Chn,
1/ n-1 1
= Cm1—Ch
2(L(n—1)/2J>+2 1
1/2m—1\ 1
_§<m >+2 m-1= Cm

(6.4)



reflexive noncrossing partitions of [n] constructed in this way.
Therefore, adding up the numbers in Equations 6.1, 6.2, 6.3 and 6.4, which rep-
resent the total number of reflexive noncrossing partitions of [n] constructed in the

four different ways, we get a total of
2m —1 1/2m—1 1 1/2m—1 1 2m — 1
(m—l)+§(m—1)_§cm_1+0m+§(m—l)+§Cm_1_cm_2<m—1>

reflexive noncrossing partitions of [n] when n = 2m > 2. But

m—_l :2(m—z)!ﬁ!:m!mi: m)~ \In/2])
2<2m 1) 2m—1)!  (2m)! 2m> n )

Notice also that

(15721) =2=2@

so the formula is valid when n = 2 as well. Therefore, we can write down the formula

for the number of reflexive noncrossing partitions of [n] for all n € N:
n
s(n) = ( )
[n/2]
This is sequence A001405 in [16]. The first terms of this sequence are
1,2,3,6,10,20,35, 70,126, 252, . ..

Notice that these are the entries of last column of Figure 25 beginning with row n = 1.
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