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Master equations Derivation from Chapman-Kolmogorov equation

What is a master equation?

• Let X : R+ → {x1, . . . , xn} be finite-state jump process
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Master equations Derivation from Chapman-Kolmogorov equation

What is a master equation?

• Let X : R+ → {x1, . . . , xn} be finite-state jump process

• Since jump process is Markov process, the transition probabilities

p(xi , t|xj , s) = Prob{X (t) = xi | X (s) = xj} (t ≥ s ≥ 0)

satisfy Chapman-Kolmogorov equation

p(xi , t|xj , s) =

n
∑

k=1

p(xi , t|xk , u)p(xk , u|xj , s) (t ≥ u ≥ s).
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• Let X : R+ → {x1, . . . , xn} be finite-state jump process

• Since jump process is Markov process, the transition probabilities

p(xi , t|xj , s) = Prob{X (t) = xi | X (s) = xj} (t ≥ s ≥ 0)

satisfy Chapman-Kolmogorov equation

p(xi , t|xj , s) =

n
∑

k=1

p(xi , t|xk , u)p(xk , u|xj , s) (t ≥ u ≥ s).

• Assuming transition probabilities are of the form

p(xi , t + ∆t|xj , t) = aij(t)∆t + o(∆t) (t ≥ 0),

one derives master equation from CKE in limit ∆t → 0:

dp

dt
= A(t)p,

where off-diagonal entries are aij(t) ≥ 0 and ajj(t) = −
∑

i 6=j aij(t)
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Master equations Example

Ion channel with two identical subunits
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• Each subunit either open or closed
• channel has 3 states: S0, S1, S2 (i = # open subunits)
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• Each subunit either open or closed
• channel has 3 states: S0, S1, S2 (i = # open subunits)
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Master equations Example

Ion channel with two identical subunits

α

α

α

α

ββ

β β
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S2

• Each subunit either open or closed
• channel has 3 states: S0, S1, S2 (i = # open subunits)

• Subunits open, close randomly with rates α, β

”State diagram”: S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2
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Master equations Example

Master equation for jump process
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• Let p(t) = (p0(t), p1(t), p2(t))
T be probability distribution for X (t)

• pi(t) = Prob{X (t) = Si}
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S2 S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2

• Let p(t) = (p0(t), p1(t), p2(t))
T be probability distribution for X (t)

• pi(t) = Prob{X (t) = Si}

Master equation:
dp

dt
= Ap =





−2α β 0
2α −α − β 2β
0 α −2β








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p1

p2





B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations March 21, 2009 4 / 21



Master equations Example

Behavior of solutions of autonomous master equation

dp

dt
= Ap =





−2α β 0
2α −α − β 2β
0 α −2β









p0

p1

p2





α = β = 1
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Master equations Example

Behavior of solutions of autonomous master equation

dp
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Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.
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Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

A is decomposable if there exists
permutation matrix P such that

P−1AP =

[

A1 0
0 A2

]

A is splitting if there exists
permutation matrix P such that

P−1AP =





A1 0 B1

0 A2 B2

0 0 A3




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• All W-matrices have eigenvalue λ1 = 0
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• All W-matrices have eigenvalue λ1 = 0

• All other eigenvalues either zero or have negative real part
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Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

A is decomposable if there exists
permutation matrix P such that

P−1AP =

[

A1 0
0 A2

]

A is splitting if there exists
permutation matrix P such that

P−1AP =





A1 0 B1

0 A2 B2

0 0 A3





• All W-matrices have eigenvalue λ1 = 0

• All other eigenvalues either zero or have negative real part

• Zero is repeated eigenvalue iff W-matrix is decomposable or splitting
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Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations March 21, 2009 8 / 21



Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

• Let λ1, . . . , λn be ordering of eigenvalues of A such that
0 = λ1 ≥ ℜ(λ2) ≥ · · · ≥ ℜ(λn)
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Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

• Let λ1, . . . , λn be ordering of eigenvalues of A such that
0 = λ1 ≥ ℜ(λ2) ≥ · · · ≥ ℜ(λn)

• ℜ(λi) < 0 for 2 ≤ i ≤ n since A is neither decomposable nor splitting
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Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

• Let λ1, . . . , λn be ordering of eigenvalues of A such that
0 = λ1 ≥ ℜ(λ2) ≥ · · · ≥ ℜ(λn)

• ℜ(λi) < 0 for 2 ≤ i ≤ n since A is neither decomposable nor splitting

• Every probability distribution solution p of master equation is of form

p(t) = v1 + c2e
λ2tv2 + · · · + cne

λntvn

where vi ’s are corresponding eigenvectors and ci ’s are polynomials in
t of degree < n
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Master equations van Kampen’s theorem

van Kampen’s theorem for autonomous master equations

Theorem

Suppose A is a constant W-matrix. If A is neither decomposable nor
splitting, then every probability distribution solution of the master
equation approaches a unique stationary distribution.

Proof.

• Let λ1, . . . , λn be ordering of eigenvalues of A such that
0 = λ1 ≥ ℜ(λ2) ≥ · · · ≥ ℜ(λn)

• ℜ(λi) < 0 for 2 ≤ i ≤ n since A is neither decomposable nor splitting

• Every probability distribution solution p of master equation is of form

p(t) = v1 + c2e
λ2tv2 + · · · + cne

λntvn

where vi ’s are corresponding eigenvectors and ci ’s are polynomials in
t of degree < n

• Therefore, p(t) → v1 independent of initial conditions
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Master equations Nonautonomous

Nonautonomous master equation
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S2 S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2

• Ion channel kinetics are dependent on external factors such as
membrane voltage ⇒ α, β are functions of time!
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Master equations Nonautonomous

Nonautonomous master equation

α

α

α

α

ββ

β β

S0

S1

S2 S0

2α
−→
←−
β

S1

α
−→
←−
2β

S2

• Ion channel kinetics are dependent on external factors such as
membrane voltage ⇒ α, β are functions of time!

• How will solutions behave now?
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Master equations Nonautonomous

Behavior of solutions of nonautonomous master equation

dp

dt
= Ap =





−2α β 0
2α −α − β 2β
0 α −2β








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



α = |sin(t)|, β = |cos(t)|
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Master equations Nonautonomous

Behavior of solutions of nonautonomous master equation

dp

dt
= Ap =





−2α β 0
2α −α − β 2β
0 α −2β
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Master equations Nonautonomous

What causes solutions to approach each other?

• As in autonomous case, for each t ≥ 0
• 0 is a simple eigenvalue of A(t)
• other eigenvalues of A(t) have negative real part
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• Eigenstructure is often misleading for nonautonomous ODEs!
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Master equations Nonautonomous

What causes solutions to approach each other?

• As in autonomous case, for each t ≥ 0
• 0 is a simple eigenvalue of A(t)
• other eigenvalues of A(t) have negative real part

• Eigenstructure is often misleading for nonautonomous ODEs!

Example:

a11(t) = −1 − 9 cos2(6t) + 12 sin(6t) cos(6t)

a12(t) = 12 cos2(6t) + 9 sin(6t) cos(6t)

a21(t) = −12 sin2(6t) + 9 sin(t) cos(6t)

a22(t) = −1 − 9 sin2(6t) − 12 sin(6t) cos(6t)

A(t) = [aij(t)] has eigenvalues −1 and −10 for all t ≥ 0, yet

x(t) = e2t

[

2 sin(6t) + cos(6t)
2 cos(6t) − sin(6t)

]

+ 2e−13t

[

2 cos(6t) − sin(6t)
2 sin(6t) − cos(6t)

]

is a solution of ẋ = A(t)x
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Master equations Nonautonomous

Current theory

If the transition rates vary according to specific functions of
time, the concentration of each subunit state approaches to a
specific function of time (in comparison to a constant value
when transition rates are constant) regardless of the initial
concentration of states.

Nekouzadeh, Silva and Rudy, Biophys J (2008)
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Master equations Nonautonomous

L1-norm as Lyapunov function for H0-solutions

• Recall ||x||1 =
∑n

i=1 |xi |
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• H0 is invariant manifold of master equation
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L1-norm as Lyapunov function for H0-solutions

• Recall ||x||1 =
∑n

i=1 |xi |
• Define H0 = {x |

∑n
i=1 xi = 0}

• H0 is invariant manifold of master equation
• If p(t) and q(t) are probability distribution solutions of master

equation, then x(t) = p(t) − q(t) ∈ H0
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Master equations Nonautonomous

L1-norm as Lyapunov function for H0-solutions

• Recall ||x||1 =
∑n

i=1 |xi |
• Define H0 = {x |

∑n
i=1 xi = 0}

• H0 is invariant manifold of master equation
• If p(t) and q(t) are probability distribution solutions of master

equation, then x(t) = p(t) − q(t) ∈ H0

• If x(t) is any H0-solution, then for a.e. t:

d ||x(t)||1
dt

= −
∑

i∈[n]\I+

∑

j∈I+

aij(t)xj(t) −
∑

i∈[n]\I
−

∑

j∈I
−

aij(t) |xj(t)|

−
∑

i∈I
−

∑

j∈I+

aij(t)xj(t) −
∑

i∈I+

∑

j∈I
−

aij(t) |xj(t)|
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Master equations Nonautonomous

L1-norm as Lyapunov function for H0-solutions

• Recall ||x||1 =
∑n

i=1 |xi |
• Define H0 = {x |

∑n
i=1 xi = 0}

• H0 is invariant manifold of master equation
• If p(t) and q(t) are probability distribution solutions of master

equation, then x(t) = p(t) − q(t) ∈ H0

• If x(t) is any H0-solution, then for a.e. t:

d ||x(t)||1
dt

= −
∑

i∈[n]\I+

∑

j∈I+

aij(t)xj(t) −
∑

i∈[n]\I
−

∑

j∈I
−

aij(t) |xj(t)|

−
∑

i∈I
−

∑

j∈I+

aij(t)xj(t) −
∑

i∈I+

∑

j∈I
−

aij(t) |xj(t)|

• I+, I− contain positive, negative indices of x(t), hence d||x(t)||1
dt

≤ 0
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L1-norm as Lyapunov function for H0-solutions

• Recall ||x||1 =
∑n

i=1 |xi |
• Define H0 = {x |

∑n
i=1 xi = 0}

• H0 is invariant manifold of master equation
• If p(t) and q(t) are probability distribution solutions of master

equation, then x(t) = p(t) − q(t) ∈ H0

• If x(t) is any H0-solution, then for a.e. t:

d ||x(t)||1
dt

= −
∑

i∈[n]\I+

∑

j∈I+

aij(t)xj(t) −
∑
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−
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j∈I+

aij(t)xj(t) −
∑

i∈I+

∑

j∈I
−

aij(t) |xj(t)|

• I+, I− contain positive, negative indices of x(t), hence d||x(t)||1
dt

≤ 0

• If d||x(t)||1
dt

= 0 then A(t) is decomposable or splitting (⇒ λ2(t) = 0)
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Master equations Nonautonomous

L1-norm as Lyapunov function for H0-solutions

• Recall ||x||1 =
∑n

i=1 |xi |
• Define H0 = {x |

∑n
i=1 xi = 0}

• H0 is invariant manifold of master equation
• If p(t) and q(t) are probability distribution solutions of master

equation, then x(t) = p(t) − q(t) ∈ H0

• If x(t) is any H0-solution, then for a.e. t:

d ||x(t)||1
dt

= −
∑

i∈[n]\I+

∑

j∈I+

aij(t)xj(t) −
∑

i∈[n]\I
−

∑

j∈I
−

aij(t) |xj(t)|

−
∑

i∈I
−

∑

j∈I+

aij(t)xj(t) −
∑

i∈I+

∑

j∈I
−

aij(t) |xj(t)|

• I+, I− contain positive, negative indices of x(t), hence d||x(t)||1
dt

≤ 0

• If d||x(t)||1
dt

= 0 then A(t) is decomposable or splitting (⇒ λ2(t) = 0)

• Converse: if ℜ(λ2(t)) < 0 then d||x(t)||1
dt

< 0
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Master equations Nonautonomous

Conjecture

Master equation:
dp

dt
= A(t)p (1)

Conjecture

Let A : R+ → R
n×n be a continuous, W-matrix-valued function, and let

λ1(t), . . . , λn(t) be an ordering of the n eigenvalues of A(t), counting
multiplicities, such that 0 = λ1(t) ≥ ℜ(λ2(t)) ≥ · · · ≥ ℜ(λn(t)) for all
t ≥ 0. If ℜ(λ2) is not integrable, then all probability distribution solutions
of (1) are globally asymptotically stable (GAS); i.e., given any two
probability distribution solutions p and q of (1),

p(t) − q(t) → 0 as t → ∞.
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Conjecture

Master equation:
dp

dt
= A(t)p (1)

Conjecture

Let A : R+ → R
n×n be a continuous, W-matrix-valued function, and let

λ1(t), . . . , λn(t) be an ordering of the n eigenvalues of A(t), counting
multiplicities, such that 0 = λ1(t) ≥ ℜ(λ2(t)) ≥ · · · ≥ ℜ(λn(t)) for all
t ≥ 0. If ℜ(λ2) is not integrable, then all probability distribution solutions
of (1) are globally asymptotically stable (GAS); i.e., given any two
probability distribution solutions p and q of (1),

p(t) − q(t) → 0 as t → ∞.

• If ℜ(λ2(t)) < 0 then d||x(t)||1
dt

< 0 for any H0-solution x(t)

• The nonintegrability of ℜ(λ2) “should” ensure that ||x(t)||1 → 0
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Master equations Special cases of conjecture

First generalization of van Kampen’s theorem

• van Kampen’s theorem is special case of conjecture
• λ2(t) < 0 is constant, so not integrable
• all probability distribution solutions approach v1
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Master equations Special cases of conjecture

First generalization of van Kampen’s theorem

• van Kampen’s theorem is special case of conjecture
• λ2(t) < 0 is constant, so not integrable
• all probability distribution solutions approach v1

• Theorem can be extended slightly using similar proof

Theorem

Suppose A(t) = f (t)M for all t ≥ 0, where M is constant W-matrix and
f : R+ → R+ is continuous. Then probability distribution solutions of the
master equation are GAS if and only if M is neither decomposable nor
splitting and f is not integrable.
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Master equations Special cases of conjecture

Example of first generalization

dp

dt
= Ap = f (t)
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Master equations Special cases of conjecture

Generalization of van Kampen’s theorem for asymptotically

periodic A

Theorem

If A is continuous, W-matrix-valued and there exists a continuous,
periodic, W-matrix-valued function B whose ω-limit set contains at least
one matrix that is neither decomposable nor splitting such that

lim
t→∞

||A(t) − B(t)||1 = 0,

then probability distribution solutions of the master equation are GAS.
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Theorem

If A is continuous, W-matrix-valued and there exists a continuous,
periodic, W-matrix-valued function B whose ω-limit set contains at least
one matrix that is neither decomposable nor splitting such that

lim
t→∞

||A(t) − B(t)||1 = 0,

then probability distribution solutions of the master equation are GAS.

• Idea: L1-norm must decrease by some uniform amount during each
period of B .
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Master equations Special cases of conjecture

Generalization of van Kampen’s theorem for asymptotically

periodic A

Theorem

If A is continuous, W-matrix-valued and there exists a continuous,
periodic, W-matrix-valued function B whose ω-limit set contains at least
one matrix that is neither decomposable nor splitting such that

lim
t→∞

||A(t) − B(t)||1 = 0,

then probability distribution solutions of the master equation are GAS.

• Idea: L1-norm must decrease by some uniform amount during each
period of B .

• Special case of conjecture since λ2 asymptotically approaches a
nonpositive periodic function which is negative at least once during
each period.

B.A. Earnshaw, J.P. Keener (Utah) Nonautonomous master equations March 21, 2009 18 / 21



Master equations Special cases of conjecture

Another generalization of van Kampen’s theorem

Theorem

If A is differentiable, W-matrix-valued function such that both A and its
derivative are bounded, and the ω-limit set of A contains no matrix which
is either decomposable or splitting, then probability distribution solutions
of the master equation are GAS.
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Theorem

If A is differentiable, W-matrix-valued function such that both A and its
derivative are bounded, and the ω-limit set of A contains no matrix which
is either decomposable or splitting, then probability distribution solutions
of the master equation are GAS.

• Idea: if ||x(t)||1 → r > 0, then ω(A) contains a decomposable or
splitting matrix
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Master equations Special cases of conjecture

Another generalization of van Kampen’s theorem

Theorem

If A is differentiable, W-matrix-valued function such that both A and its
derivative are bounded, and the ω-limit set of A contains no matrix which
is either decomposable or splitting, then probability distribution solutions
of the master equation are GAS.

• Idea: if ||x(t)||1 → r > 0, then ω(A) contains a decomposable or
splitting matrix

• Special case of conjecture since
• ω(λ2) is nonempty and contains negative number
• λ′

2(t) is bounded
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Master equations Incompleteness of conjecture

λ2(t) = 0 for all t ≥ 0 but solutions are GAS

A(t) =

{
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The end

Thank you!

Thanks to

• Jim Keener

• NSF-IGERT for funding
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