
ON THE NONCROSSING PARTITIONS OF A CYCLE

G. KREWERAS

Abstract. This article defines the paritions of a finite set structured in a
cycle which possesses the property that a pair of points belonging to a class
and a pair of points belonging to another class cannot be in a crossed way.
It establishes that these partitions form a lattice and it specifies some of the
descriptive and enumerative properties of the lattice; it computes in particular
the Möbius function.

1. Definitions

In all that follows, we call cycle the pair (M, c) formed by

(1) a nonempty, finite set M of cardinality m,
(2) a circular bijection c of M into itself, where the word circular means that

for all x ∈ M and for all i ∈ {1, 2, . . . , m − 1} we have ci(x) 6= x. The
elements of M are called points.

Let A be any nonempty subset of M , and let x ∈ A. If kx is the least positive
integer such that ckx(x) ∈ A, we put ckx(x) = d(x). It is clear that d(x) defines a
circular bijection of A into itself; (A, d) is thus a cycle, and we call it the trace of
(M, c) over A.

For all pairs (x, y) of distinct points of M , we call δ(x, y) (distance from x to y)
the least positive integer k such that ck(x) = y; thus we have, for all pairs {x, y},
δ(x, y) + δ(y, x) = m.

Given two disjoint pairs {x, y} and {u, v}, we say that the pairs are crossed if
the integer δ(x, y) is between the lesser and greater of the the two integers δ(x, u)
and δ(x, v), else the two are uncrossed.

Any two disjoint subsets A and B of M are said to be noncrossing if there does
not exist two crossed pairs contained in A and B respectively; in particular if at
least one of the two disjoint subsets A and B is a singleton (subset of cardinality
1), A and B are necessarily noncrossing.

In certain cases we will consider two noncrossing subsets A and B of M which
possess the following property: there exists two points x and y such that

x ∈ A, y ∈ B, c(x) ∈ B, c(y) ∈ A.

If this is so, we say that the two subsets A and B are adjacent. We note that one of
the two adjacent subsets can be a singleton {x}; the other then contains c(x) and
c−1(x).

Given a cycle (M, c), we call noncrossing partition of M a partition in which any
two distinct classes are noncrossing.
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The central object of this article is to study the properties of the set of noncross-
ing partitions.

2. Lattice Structure

Given a cycle (M, c) and any partition P of M , we define a new partition P ,
called the noncrossing closure of P : the classes of P we will take as vertices of a
nonoriented graph G(P ), two vertices of G(P ) are nonadjacent if and only if the
two corresponding classes of P are noncrossing. It is then the vertices of each of
the connected components of G(P ) which define the classes of P joined together to
form each of the classes of P . (In other words, if two classes are crossed, they join
into one, and so on until there is nothing but noncrossing classes.) Every partition
P of M is evidently more fine (meaning larger1) then its noncrossing closure.

Theorem 1. Given any partition P of M , every noncrossing partition less fine
than P is also less fine than the noncrossing closure of P .

Proof. If Q is a partition less fine than P , every class A of P is contained in a class
B of Q; let B1 and B2 be two distinct classes of Q and let A1 and A2 be two classes
of P such that

A1 ⊆ B1, A2 ⊆ B2.

If the partition Q is noncrossing, B1 and B2 are noncrossing, so also A1 and A2. It
follows that each time two classes of P are crossing, they are contained in the same
class of Q. Gradually, one sees that each of the connected components of G(P )
whose vertices are the classes of P is contained in the same class of Q. Thus every
class of the noncrossing closure of P is contained in a class of Q, proving Theorem
1. ˜

It is well-known that the the set {P, Q, . . .} of all partitions of a given set form a
lattice, of which we note the two operations P ⌢ Q (the least fine of the partitions
more fine than P and Q) and P ⌣ Q (the most fine of the partitions less fine than
P and Q).

Theorem 2. If P and Q are two noncrossing partitions, the same is true of P ⌢ Q.

Proof. Every class of P ⌢ Q is an intersection of a class of P and a class of Q.
Now any two classes of P are by hypothesis noncrossing; it is thus the same with
their repective intersections with any class of Q, and, for a stronger reason, with
two distinct classes of Q. ˜

Theorem 3. If P and Q are two noncrossing partitions, every noncrossing parti-
tion less fine than P and Q is less fine than the noncrossing closure of P ⌣ Q.

Proof. Every partition less fine than P and Q is less fine than P ⌣ Q (by definition
of P ⌣ Q). If one such partition is also noncrossing, it is less fine than the
noncrossing closure of P ⌣ Q by Theorem 1. ˜

It follows from Theorems 2 and 3 that the noncrossing partitions of M form a
set Tm that has the structure of a lattice. It is however to be noted that Tm is not
in general a sublattice of the lattice of all the partitions of M . Figure 1 represents
the lattice T4 of M formed from the four points a, b, c, d placed in their cyclic order.

1We always use, in everything that follows, the expressions “less fine” and “more fine” in the
large sense, unless otherwise indicated.
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(a, b, c, d)

(a, bc, d) (ab, c, d) (a, bd, c) (ac, b, d) (a, b, cd) (ad, b, c)

(abc, d) (a, bcd) (ad, bc) (ab, cd) (abd, c) (acd, b)

(abcd)

Figure 1

3. Dense Partitions, Complementary Partitions

In view of the study of certain properties of Tm it is interesting to consider a
particular species of noncrossing partitions. Let (L, e) be a cycle where L is a set of
cardinality 2m and e a circular bijection of L into L; we consider L as partitioned
into two classes of cardinality m, one formed from the points x, e2(x), e4(x), . . .
(even points), and the other from the points e(x), e3(x), . . . (odd points).

This said, we call dense partition of L any partition R satisfying the following
conditions:

(1) R is a noncrossing partition,
(2) each class of R is formed of points of the same parity,
(3) for any x, the two classes containing x and e(x) respectively are adjacent

(as defined in Section 1).

Every class A of a dense partition R has one or more adjacent classes; in fact,
it is easy to see that there are as many as the points of A. One also sees without
difficulty that if one advances beginning with A, from class to class by successive
adjacencies, one can reach any class of R and one can never (without turning back)
return to A.2 It follows that the classes of R, together with its adjacencies, define
a tree. Now the number of edges of this tree, that is to say the number of pairs
of adjacent classes, is equal to m; indeed, each of the 2m pairs {x, e(x)} occurs
in adjacent classes and each adjacency creates (by definition) two such pairs. The
trees of classes, having m edges, have thus m + 1 vertices. Every dense partition of
L is thus a partition into m + 1 classes ; Figure 2 gives an example corresponding
to m = 8.3

2trans.: I am not sure how to translate this sentence. The translation given seems to be in
accordance with what Kreweras wrote, but is obviously contrary the truth. I think the idea is
that, beginning with any edge (adjacency), we do not cross the same edge until we have first
walked all the edges of the described graph.

3trans.: Those familiar with meanders will recognize dense partitions as a particular collection
of closed planar meanders of order m.
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Figure 2

From this remark relative to the dense partitions of L results a property of the
set of noncrossing partitions of M . Indeed let P be a noncrossing partition of M

into h nonempty classes. The cycle (M, c) can always be considered as the trace
over M of a cycle (L, e), with e2 = c, which amounts to inserting between the m

points of M , considered as even points, as many odd points to form another cycle
(M ′, c′) isomorphic to (M, c).4

Now from the partition P of M , one can always complete, by adjacent classes,
a dense partition of R of L, of which the restriction to M ′ will be a noncrossing
partition P ′ of M ′. The latter will have m + 1 − h classes since there is a total of
m+1 classes in R. One thus sees that there will be as many noncrossing partitions
of M into h classes as noncrossing partitions of M (or of M ′) into m−h+1 classes;
we will later calculate the exact number of these partitions.

We now indicate a translation of this property into algebraic language. Given a
cycle (M, c) and a noncrossing partition P of M , one can to this partition associate
a bijection p of M into M defined as follows: every point x of M will have as its
image p(x) the first ci(x) (i > 0) which belongs to the same class as x. Under these
conditions, one can assure without difficulty that the partition P ′ defined earlier
is isomorphic to a noncrossing partition of M (and also of M ′, where the x’s are
isomorphic to their corresponding e(x)’s), and that this partition P ′ can be defined

4trans.: Notice that this is nothing more than a way to describe the self-duality of Tm. The
translator thinks this a very clever approach.
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by
p′ = cp−1

as the partition P has been by p. Upon repeating the operation, one has

p′′ = cp′−1 = c(pc−1) = cpc−1.

One then ends up not at the partition P from which one began, but at the partition
that is constructed if one transforms every point by c.5

Finally another consequence of the remark relative to dense partitions is the
following: if one calls complementary the partitions P of M and P ′ of M ′, every
singleton {x} of one of the two partitions, say P , is adjacent to the class of P ′ which
contains the two points e(x) and e−1(x). Now these latter points are consecutive
in M ′ since e = e2 · e−1 = c · e−1. Conversely, every class of P ′ that contains
two consecutive points y and c(y) is adjacent to the singleton {e(y)}. One notably
concludes that if the partition P does not contain a singleton, no class of P ′ contains
two consecutive points (we say that P ′ is a diluted partition). It follows that, within
the noncrossing partitions, the number of diluted partitions of M into α classes is
equal to those partitions without a singleton of M ′ (or of M) into m−α+1 classes.
We will later make this number precise as a function of m and α.

4. Partitions of a Given Type

We say that a partition P is of a given type if one specifies, for every positive
integer k, the number sk of classes of P having cardinality k. We denote the type
by the integer sequence

Y = ((s1, s2, . . . , sk, . . .)).

If P has h nonempty class total, one clearly has

s1 + s2 + . . . + sk + . . . = h,

s1 + 2s2 + . . . + ksk + . . . = m.

Another way of specifying the type Y is to write the Young sequence

Y = (y1, y2, . . . , yh),

which enumerates the cardinalities of the h classes in a non-increasing order.
We denote by [[m, h]] the set of all types of partitions of M into h (nonempty)

classes.

Theorem 4. If Y ∈ [[m, h]], the number of noncrossing partitions of M having the
type Y is equal to

v(Y ) =
(m)h−1

s1!s2! · · · sk! · · ·
.

Proof. The statement of the theorem is equivalent to affirming that if one computes
not just the noncrossing partitions themselves, but the noncrossing partitions to-
gether with a labelling of the subsets of the same cardinality, then their number
should be equal to (m)h−1. This amounts to computing the different ways of
specifying in M a sequence of h subsets A1, A2, . . . , Ah, having fixed successive
cardinalities a1, a2, . . . , ah, such that {A1, . . . , Ah} is a noncrossing partition of M .
This is how we will proceed. The beginning of this proof will be an induction on
m.

5trans.: I am not quite sure what this sentence means. I think that the self-duality of Tm is
supposed to be expressed here, but the statement seems to indicate otherwise.
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Given any proper subset A of M , we call gap of A every maximal succession of
points of M \ A, that is to say every sequence x, c(x), . . . , ck−1(x) of elements not
belonging to A such that c−1(x) ∈ A and ck(x) ∈ A. We call x and ck−1(x) the
initial point and final point of the gap; it is possible that they coincide.

If A is a class of the noncrossing partition P , every other class A′ of the same
partition P is included entirely in one gap of A; for if two elements u and v of A′

belong to two distinct gaps, the pair {u, v} is necessarily crossed with A.
Every gap C of the class A of P is thus a union of classes of P . These classes

form moreover a noncrossing partition of C, if one admits the definition on C a
cycle that is the trace over (M, c). Particularly if on considers the subset Ah of a
noncrossing partition P = {A1, A2, . . . , Ah−1, Ah} having l gaps, each of these gaps
will have as cardinailty a sum of the positive integers found among the terms of the
sequence a1, a2, . . . , ah−1.

We calculate first the number of subsets A of M having l gaps, which we will call
C1, C2, . . . , Cl of fixed respective cardinalities c1, c2, . . . , cl; A is then of cardinality
a = m − (c1 + · · · + c2). Once C1 is placed, which can be done in m ways (for
example the m positions of the initial point of C1) there exists (l − 1)! ways to
specify the order of appearance after C1 of the l − 1 other gaps. It remains to
specify how many points of A will be placed between each gap and the next, that
is to say to define a sequence of l positive integers that sum to a; one knows that
there are

(

a−1
l−1

)

ways to do this. Finally, the number of ways of defining A is equal
to the product

m(l − 1)!

(

a − 1

l − 1

)

= m(a − 1)l−1.

Note the this number just depends, for given M , on the cardinality a of A and the
number l of gaps, without making reference to the particular cardinalities of the
gaps.

To compute the ways of taking from M the subsets A1, A2, . . . , Ah, of fixed
cardinalities a1, a2, . . . , ah, that constitute a noncrossing partition P , we first fix
an arbitrary number l of gaps of Ah. For each of the m(ah − 1)l−1 possiblities
relative to Ah, the set {1, 2, . . . , h − 1} of indices of the other classes Ai partition
themselves into l classes Dj (j ∈ {1, 2, . . . , l}), of which each will correspond to all
the Ai include in the same gap Cj of Ah; we denote this partition of {1, 2, . . . , h−1}
by R = {D1, D2, . . . , Dl}. The cardinality cj of the gap Cj is equal to

cj =
∑

i∈Dj

ai = aDj
.

The classes Ai such that i ∈ Dj constitute, one remarks, a noncrossing partition
of Cj into dj classes (dj = cardDj). As aDj

, in as far as it is the cardinality of a
gap, is certainly ≤ m − 1, one can use the induction hypothesis to affirm that the
number of ways of placing on Ci the Ai for each i ∈ Dj is equal to (aDj

)dj−1. The
total number of ways of placing A1, A2, . . . , Ah−1, according to the given partition
R, is thus

XR =

l
∏

j=1

(aDj
)dj−1.

If, in leaving l fixed, one associates with R the set of all the partitions of {1, 2, . . . , h−
1} in l classes, one can calculate the sum of the XR by using a formal identity, for
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the demonstration of which we refer to [3]. By this identity, the sum is equal to
(

h − 2

l − 1

)

(a1 + a2 + · · · + ah−1)h−l−1 =

(

h − 2

l − 1

)

(m − ah)h−l−1.

Place in M a class Ah of cardinality ah at one of the l gaps and distribute the h−1
other classes into these l gaps so that they form a noncrossing partition, so that
finally the possible number of ways is equal to

m(ah − 1)l−1

(

h − 2

l − 1

)

(m − ah)h−l−1 = m

(

h − 2

l − 1

)

(ah − 1)l−1(m − ah)h−l−1.

This expression, if at last one sums the formula over l (Vandermonde binomial
formula), gives

m(m − 1)h−2 = (m)h−1;

this is exactly the desired expression, finishing the proof of Theorem 4. ˜

Corollary 1. The total number of noncrossing partitions of a cycle of m points
into h classes is equal to

(m − 1)!m!

(h − 1)!h!(m − h)!(m − h + 1)!
= γ(m − 1, h − 1).

Proof. This follows from Theorem 4 and the well-known fact that

∑

Y ∈[[m,h]]

h!

s1!s2! · · ·
=

(

m − 1

h − 1

)

.

This formula expresses, recall, that among the
(

m−1
h−1

)

sequences of h positive
integers that sum to m, the number of those that for all k having sk terms equal
to k is equal to the multinomial

(

h
s1,s2,...

)

.

The same expression of γ(m−1, h−1) confirms the result obtained in Section 3,
stating that there are as many noncrossing partitions of M into h classes as there
are into m − h + 1 classes. ˜

Corollary 2. The total number of noncrossing partitions of a cycle of m points is
equal to the number (said “of Catalan”)

γm =
(2m)!

m!(m + 1)!
.

Proof. One obtains this number by summation, over h ∈ {1, 2, . . . , m}, of the ex-
pression γ(m− 1, h− 1); the fact that this summation gives the Catalan number is
easy to establish and, as a matter of fact, well-known; cf. [2] for example. ˜

5. Diluted Partitions and Partitions without a Singleton

For every noncrossing partitions P (other than the trivial partition) of M into h

classes, we call arc every maximal succession of points of the same class of P , and
we consider the set N , of cardinality n, of the initial points of these arcs. It is clear
that the trace of P over N is a diluted partition of N into h classes (the cycle on
N being the trace of the cycle on M). We call then ω(n, h) the number of diluted
partitions of a cycle of n elements into h classes.
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Since these are
(

m
n

)

ways to specify on M the n points that form N , the total
number of noncrossing partitions of M into h classes can be written

θ(m − 1, h − 1) =
∑

n≥h

(

m

n

)

ω(n, h),

which immediately gives

(m)h(m − 1)h−2

(h − 1)!h!
=

∑

k≥0

ω(h + k, h)

(h + k)!
(m)h+k;

of course, after simplification by (m)h,

(m − 1)h−2 = (h − 1)!h!
∑

k≥0

ω(h + k, h)

(h + k)!
(m − h)k.

But one such expression of (m − 1)h−2 as a linear combination of terms (m − h)k

is necessarily identical to that given by the Vandermonde formula:

(m − 1)h−2 =
∑

k≥0

(

h − 2

k

)

(h − 1)h−k−2(m − h)k.

One immediately concludes that

ω(h + k, h) =
(h + k)!

h(h − 1)k!(k + 1)!(h − k − 2)!
;

whence it is easy to get ω(n, h), of which Table 1 gives the first values. The number
ω(m, α) responds to the question left unanswered in Section 3 on the number of
diluted partitions of M into α classes; the same number, which can be written
ω(m, m − β + 1), counts the number of partitions without singletons of M into
β = m − α + 1 classes.

ω(n, h) n = 2 3 4 5 6 7 8 9 10 11 12
h = 2 1

3 1 2
4 1 5 5
5 1 9 21 14
6 1 14 56 84 42
7 1 20 120 300 330 132

Table 1

It is to be noted that the numbers of Table 1 are those which occur as coefficients
(or more correctly sums of the coefficients of the terms of the same “weight”) of
the expressions giving the b’s as a function of the a’s when

y = x(1 − a1x − a2x
2 − · · · − anxn − · · · ),

x = y(1 + b1x + b2x
2 + · · · + bnxn + · · · );

there is more on this subject in [1], [5], and [6].
In addition, the sums of the ω(n, h) with respect to n, by successive h’s, are the

numbers that solve the problem sometimes called “Schröder’s parenenthisizing”
(cf. [8]). One can find these numbers thanks to the following remark: all partitions
without singletons of M into β classes is of the type Y ′ defined by a Young sequence
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of β terms all ≥ 2. If one collects together all the terms Y ′, one obtains a Young
sequence Y belonging to [[m − β, β]]. The desired number is thus (Theorem 4)

∑

v(Y ′) =
∑ (m)β−1

s1!s2! · · · sk! · · ·
,

the summation over the two members, being understood as all the Y ′ s.t. Y ∈
[[m − β, β]]. If one takes into account that Y = ((s1, s2, s3, . . .)) is equivalent to
Y ′ = ((0, s1, s2, . . .)), one is lead to

(m)β−1

β!

∑

(

β

s1s2 · · · sk · · ·

)

,

where
∑

(

β
s1s2···sk···

)

is the total number of β-compositions of the integer m − β,

being
(

m−β−1
β−1

)

, which makes appear the desired expression.

6. Monotonic Sequences and Chains in Tm

Theorem 5. The number of ways of which one can define in Tm a sequence of
r − 1 partitions of which each is more fine the preceeding is

w(m, r) =
(mr)m−1

m!
.

Proof. w(m, 1) is equal to 1 by natural convention and w(m, 2) reduces to the
cardinality of Tm, which, as one has seen, is the Catalan number

(2m)!

m!(m + 1)!
=

(2m)m−1

m!
.

The value of w(m, r) in the statement of the theorem is thus valid for r = 1 and for
r = 2; we will show that if the statement is established just for the value r of the
second argument, then it is also true for the value r + 1. We thus note that if one
calls P1, P2, . . . , Pr a sequence of r partitions such that Pi is more fine than Pi−1

(i ∈ {2, 3, . . . , r}), and if Pi is a given partition P of type ((s1, s2, . . . , sk, . . .)) ∈
[[m, h]], the number of ways of specifying the rest of the sequenceis the product Π
of the numbers w(kA, r) for the different classes A of Pi.

Suppose that the initial given partition P is of type Y = ((s1, s2, . . . , sk, . . .)) ∈
[[m, h]]. The product of the w(kA, r) is thus equal to

Πγ = [w(1, r)]s1 [w(2, r)]s2 · · · [w(k, r)]sk · · · .

By the induction hypothesis, one can write

Πγ =
[(r)0]

s1 [(2r)1]
s2 · · · [(kr)k−1]

sk · · ·

(1!)s1(2!)s2 · · · (k!)sk · · ·
.

If instead of specifying P one specifies only the type of P , the product Πγ is to be
taken as many times as exists noncrossing partitions of the type Y , that is to say,
by Theorem 4,

(mh−1)

s1!s2! · · · sk! · · ·

times. The number of possibilities is thus equal to

(m)h−1[(r)0]
s1 [(2r)1]

s2 · · · [(kr)k−1]
sk · · ·

(1!)s1s1!(2!)s2s2! · · · (k!)sk sk! · · ·
=
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ϕ(Y )

(m − h + 1)!
[(r)0]

s1 [(2r)1]
s2 · · · [(kr)k−1]

sk · · · ;

ϕ(Y ) is the well-known expression of the total number of partitions of type Y of a
given finite set.

Finally if, instead of giving the type Y of [[m, h]], one associates with Y this
set [[m, h]], it will be calculate, as the numerator of a fraction of denominator
(m − h + 1)!, the sum

∑

Y ∈[[m,h]]

ϕ(Y )
[(r)0]

s1 [(2r)1]
s2 · · · [(kr)k−1]

sk · · ·
.

But since ϕ(Y ) is the total number of partitions of type Y of a set of cardinality
m, the above sum appears as a particular case of the first member of the identity
already used in Section 4, which is the case where the m variables xi are all equal
to r: the sum XA for a class A of cardinality k is equal to kr, and the particular
subset is equal to the product which was noted XP in the particular identity.

The desired sum is none other than the sum of these XP extended to all the
partitions P into h nonempty classes, and the identity tells us the value of the sum;
after reintroducing the denominator (m− h + 1)!, one has thus the total number of
possibilities equal to

(

m−1
h−1

)

(mr)m−h

(m − h + 1)!
=

1

mr + 1

(

m − 1

h − 1

)

C
m−(h−1)
mr+1 .

This is thus the number of sequences P1, P2, . . . , Pr desired if on fixes the initial
noncrossing partition P1 composed of h nonempty classes. If suffices to sum this
last expression for h between 1 and m, which is done without difficulty, to obtain
the final number of possibilities

w(m, r + 1) =
[m(r + 1)]m−1

m!
;

the theorem is thus established. ˜

Corollary 3. The number of sequences of r − 1 noncrossing partitions of which
each is strictly more fine than the preceeding, the first having at least two classes
and the last having at most m − 1, is equal to

(rm)m−1

m!
−

(

r

1

)

[(r − 1)m]m−1

m!
+

(

r

2

)

[(r − 2)m]m−1

m!
− · · · + (−1)r−1

(

r

r − 1

)

,

the rth difference, evaluated at x = 0, of the polynomial (mx)m−1

m! .

Proof. This corollary is immediately established with the help of the principle of
inclusion-exclusion. ˜

Corollary 4. The number of chains joining in Tm the trivial partition (into 1
class) to the discrete partition (into m classes) is mm−2.

Proof. This results from Corrolary 3 applies to the case where r = m−1. Under the
polynomial (mx)m−1, which is of degree m−1 in x, having only one term of degree
m − 1 in x, which is equal to mm−1xm−1, having a nonzero (m − 1)th difference:
this difference is equal to mm−1(m − 1)!, which after division by m! gives exactly
mm−2. ˜
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The same result has been established by Poupard [4] by putting these chains
into one-to-one correspondence with the set of trees having m given vertices.

7. Möbius Function

Theorem 6. The Möbius function6 of Tm between 0 (discrete partition) and M

(trivial partition), is equal to

µ(0, M) = (−1)m−1 (2m − 2)!

(m − 1)!m!
=

(−m)m−1

m!
= θm.

Proof. This proof will proceed by induction on m.
Every element P of Tm defines a sublattice CP of the partitions more fine than

P .
If P = {A1, A2, . . . , Ah}, with h ≤ m − 1, and if the cardinalities of the classes

correspond to a1, a2, . . . , ah, CP is isomorphic to the product of the lattices Ta1
×

Ta2
× · · · × Tah

; consequently the Möbius function of Tm between 0 and P is equal
to the product θa1

θa2
· · · θah

.
If P is of type Y = ((s1, s2, . . . , sk, . . .)) ∈ [[m.h]], this product is equal to

µ(0, P ) = θs1

1 θs2

2 · · · θsk

k · · · =
[(−1)0]

s1 [(−2)1]
s2 · · · [(−k)k−1]

sk · · ·

(1!)s1(2!)s2 · · · (k!)sk · · ·
.

Now the partitions of the same type Y are, by Theorem 4, in total number

m!

(m − h + 1)!

1

s1!s2! · · · sk! · · ·
.

The sum of the corresponding values of µ(0, P ) is thus

ϕ(Y )

(m − h + 1)!
[(−1)0]

s1 [(−2)1]
s2 · · · [(−k)k−1]

sk · · · ,

an expression encountered in the statement of Theorem 5 and with the same mean-
ing of ϕ(Y ), but replacing r by −1.

If we do not specify the type Y , but instead associate to Y the set [[m, h]], the
calculation of the sum of the corresponding µ(0, P ) follows as before, but with all
the variables xi equal to −1. One thus has the expression

(

m−1
h−1

)

(−m)m−h

(m − h + 1)!
.

To get µ(0, M), one just sums the above expression for h between 2 and m, then

changing the sign of the sum. To be assured that one gets thus θm = (−m)m−1

m! that
is none other than the same expression for h = 1, it suffices to show that

m
∑

h=1

(

m−1
h−1

)

(−m)m−h

(m − h + 1)!
= 0.

But this follows from the fact that the first member can be put in the form

1

(−m + 1)m!

m
∑

k=0

(

m

k

)

(u)k(v)m−k,

with u = m−1 and v = −m+1, which gives exactly 0 by Vandermonde’s binomial
formula. Theorem 6 is thus proved. ˜

6Cf. Rota [7]
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