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@ What | do

o AMPA receptor trafficking
@ Synaptic plasticity

@ What | want to do
¢ Just count things
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Mathematical neuroscience at Utah
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The synapse

E.R. Kandel et al. Principles of Neural Science (2000)
M.B. Kennedy Science (2000)
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Synaptic transmission

Action potential in Ca?* entry causes Receptor-channels open,
nerve terminal vesicle fusion and Na* enters the postsynaptic
opens Ca?*channels transmitter release cell and vesicles recycle
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E.R. Kandel et al. Principles of Neural Science (2000)
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Synaptic plasticity
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Collingridge et al., Nat. Rev. Neurosci. (2004)
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AMPA receptor trafficking at a single spine

Sheng & Kim, 2002 N2 Q QOQJ Gt
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@ Surface AMPARSs constitutively recycle with intracellular stores
o Laterally diffuse within postsynaptic membrane

@ Crosslink to scaffolding proteins in PSD
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Model of trafficking at a single spine
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Trafficking during LTP/

number of receptors in PSD
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Fast or slow recycling?

Passafaro et al., 2001 Adesnik et al., 2005
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AMPA receptor trafficking along a spiny dendrite

1. somatic exocytosis

Synaptic trafficking

2. lateral membrane diffusion

3. surface entry into spine

4. local exo/endocytosis

AMPAR

ER-Golgi

Groc & Choquet, 2006

o AMPAR:s trafficked in vesicles along microtubules?

o AMPAR:s diffuse from soma to synapse?
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Model of trafficking along a spiny dendrite
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Steady-state receptor concentrations
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@ 1,000 identical spines distributed uniformly
@ Two sources of AMPARs

¢ at soma
¢ local intracellular delivery
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Recovery rate depends on distance from soma
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@ Recovery exhibits many time-scales!



Counting RNA secondary structures

Now that we're done with that...

...let's count something!



Counting RNA secondary structures

A single strand of RNA
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@ Primary structure: sequence of bases (A,G,U,C)
@ Secondary structure: pairing of bases
@ Watson-Crick pairs: A-U, G-C (less often U-G)
@ Tertiary structure: resulting 3D molecule
o Different tertiary structures = different enzymatic properties



Counting RNA secondary structures
A single strand of RNA: An example

@ Primary structure:
AACCAUGUGGUACUUGAUGGCGAC
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A single strand of RNA: An example

@ Primary structure:
AACCAUGUGGUACUUGAUGGCGAC

@ Secondary structure:
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Counting RNA secondary structures

A single strand of RNA: An example

@ Primary structure:
AACCAUGUGGUACUUGAUGGCGAC

@ Secondary structure:

uu A U

AGC 9y,

AACCAUGUGGUACUUGAééééé!E

@ Tertiary structure: extremely difficult to predict (probably
NP-hard)
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RNA secondary structure as k-noncrossing arch diagram

® k-noncrossing arch diagram of order n

@ graph on vertex set {1,...,n}
o all vertices have degree <1

o there do not exist k arches {i1,j1},-.., {ik,jk} such that

i< <k <1< <k
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RNA secondary structure as k-noncrossing arch diagram
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RNA secondary structure as k-noncrossing arch diagram

® k-noncrossing arch diagram of order n

@ graph on vertex set {1,...,n}
o all vertices have degree <1
o there do not exist k arches {i1,j1},-.., {ik,jk} such that

<< <1 <o < ik
1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 1213

@ RNA secondary structure of n bases, pseudoknot type k — 2

s k-noncrossing (but not k — 1) arch diagram of order n
@ no l-arches {i,i+1}

@ “abstract” secondary structure (no primary structure)
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k-noncrossing arch diagrams and walks in Weyl chamber

@ Walk in Z™ of length n

o sequence of vectors Xg, X1, ...,X, € Z™ s.t. |x;+1 —x;] =0or 1
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k-noncrossing arch diagrams and walks in Weyl chamber

@ Walk in Z™ of length n

o sequence of vectors Xg, X1, ...,X, € Z™ s.t. |x;+1 —x;] =0or 1
@ Weyl chamber

@ subset of vectors x = (X1,...,Xm) € Z" s.t. x1 > -+ > Xy, >0
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k-noncrossing arch diagrams and walks in Weyl chamber

@ Walk in Z™ of length n
o sequence of vectors Xg, X1, ...,X, € Z™ s.t. |x;+1 —x;] =0or 1

@ Weyl chamber
@ subset of vectors x = (X1,...,Xm) € Z" s.t. x1 > -+ > Xy, >0

Theorem (Chen et al. (2007) Trans. Am. Math. Soc. 359)

There exists a bijection between k-noncrossing arch diagrams of
order n and walks of length n in Z*~1 which start and end at
a=(k—1,k—2,...,1) and remain in the Weyl chamber.
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|dea of proof: The bijection

Iy
5 @ [ [

4,3,2,1),6,3,21),6,3,21),6,421),6,421),6,421)
6,4,3,1),6,4,3,1),6,4,31),6,4,3,2), 6,4,3,2), 6,4,3,1)
6,4,3,1),6,4,2,1), 6,421, 6,3,2,1), 6,3,2,1), 4,3,2,1)
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Counting k-noncrossing RNA secondary structures

@ Set
Ak(n,1) = # k-nc arch diagrams of order n, / isolated nodes
Bk(n,1) = # k-nc RNA structures of n bases, / isolated bases
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Counting k-noncrossing RNA secondary structures

@ Set
Ak(n,1) = # k-nc arch diagrams of order n, / isolated nodes
Bk(n,1) = # k-nc RNA structures of n bases, / isolated bases
Theorem (Jin, Qin & Reidys, 2008)

(n=1)/2
B(n )= > (~1)° (” . b> Ax(n —2b,1)

b=0

where Ax(n, 1) is given by the generating function

n

ZZAk(n /)— = " det[/;i_j(2x) — II+J(2X)]|[_[ 1
1=0

n=1

and I,(2x) = >, X2 J(j)(r +j)V) is hyperbolic Bessel function
of 1st kind of order r.
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The end

Thank you!
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