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Current projects

What I do

AMPA receptor trafficking
Synaptic plasticity

What I want to do

Just count things
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Mathematical neuroscience at Utah

Cognition
↑

Systems
↑

Cortical Areas
↑

Small Networks
↑

Neurons
↑

Dendrites
↑

Synapses
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The synapse

E.R. Kandel et al. Principles of Neural Science (2000)
M.B. Kennedy Science (2000)
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Synaptic transmission

E.R. Kandel et al. Principles of Neural Science (2000)
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Synaptic plasticity

Collingridge et al., Nat. Rev. Neurosci. (2004)
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AMPA receptor trafficking at a single spine

Sheng & Kim, 2002

Surface AMPARs constitutively recycle with intracellular stores

Laterally diffuse within postsynaptic membrane

Crosslink to scaffolding proteins in PSD
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Model of trafficking at a single spine
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Trafficking during LTP/LTD
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Fast or slow recycling?

Passafaro et al., 2001 Adesnik et al., 2005
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AMPA receptor trafficking along a spiny dendrite

1. somatic exocytosis

2. lateral membrane diffusion

3. surface entry into spine

4. local exo/endocytosis

1
2 3

4

Groc & Choquet, 2006

AMPARs trafficked in vesicles along microtubules?

AMPARs diffuse from soma to synapse?
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Model of trafficking along a spiny dendrite
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Steady-state receptor concentrations
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GluR1/2
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1,000 identical spines distributed uniformly

Two sources of AMPARs

at soma
local intracellular delivery
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Recovery rate depends on distance from soma
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Recovery exhibits many time-scales!
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Now that we’re done with that...

...let’s count something!
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A single strand of RNA

http://ilab.cs.ucsb.edu/projects/helly/rna.jpg

Primary structure: sequence of bases (A,G,U,C)

Secondary structure: pairing of bases

Watson-Crick pairs: A-U, G-C (less often U-G)

Tertiary structure: resulting 3D molecule

Different tertiary structures ⇒ different enzymatic properties
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A single strand of RNA: An example

Primary structure:

AACCAUGUGGUACUUGAUGGCGAC
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A single strand of RNA: An example

Primary structure:

AACCAUGUGGUACUUGAUGGCGAC

Secondary structure:
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A single strand of RNA: An example

Primary structure:

AACCAUGUGGUACUUGAUGGCGAC

Secondary structure:

Tertiary structure: extremely difficult to predict (probably
NP-hard)
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RNA secondary structure as k-noncrossing arch diagram

k-noncrossing arch diagram of order n

graph on vertex set {1, . . . , n}
all vertices have degree ≤ 1
there do not exist k arches {i1, j1}, . . . , {ik , jk} such that

i1 < · · · < ik < j1 < · · · < jk
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RNA secondary structure as k-noncrossing arch diagram

k-noncrossing arch diagram of order n

graph on vertex set {1, . . . , n}
all vertices have degree ≤ 1
there do not exist k arches {i1, j1}, . . . , {ik , jk} such that

i1 < · · · < ik < j1 < · · · < jk

RNA secondary structure of n bases, pseudoknot type k − 2

k-noncrossing (but not k − 1) arch diagram of order n

no 1-arches {i , i + 1}
“abstract” secondary structure (no primary structure)
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k-noncrossing arch diagrams and walks in Weyl chamber

Walk in Z
m of length n

sequence of vectors x0, x1, . . . , xn ∈ Z
m s.t. |xi+1 − xi | = 0 or 1
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k-noncrossing arch diagrams and walks in Weyl chamber

Walk in Z
m of length n

sequence of vectors x0, x1, . . . , xn ∈ Z
m s.t. |xi+1 − xi | = 0 or 1

Weyl chamber

subset of vectors x = (x1, . . . , xm) ∈ Z
m s.t. x1 > · · · > xm > 0
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k-noncrossing arch diagrams and walks in Weyl chamber

Walk in Z
m of length n

sequence of vectors x0, x1, . . . , xn ∈ Z
m s.t. |xi+1 − xi | = 0 or 1

Weyl chamber

subset of vectors x = (x1, . . . , xm) ∈ Z
m s.t. x1 > · · · > xm > 0

Theorem (Chen et al. (2007) Trans. Am. Math. Soc. 359)

There exists a bijection between k-noncrossing arch diagrams of

order n and walks of length n in Z
k−1 which start and end at

a = (k − 1, k − 2, . . . , 1) and remain in the Weyl chamber.
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Idea of proof: The bijection

(4,3,2,1),(5,3,2,1),(6,3,2,1),(6,4,2,1),(6,4,2,1),(6,4,2,1),

(6,4,3,1),(6,4,3,1),(5,4,3,1),(5,4,3,2),(6,4,3,2),(6,4,3,1),

(6,4,3,1),(6,4,2,1),(6,4,2,1),(6,3,2,1),(5,3,2,1),(4,3,2,1).
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Counting k-noncrossing RNA secondary structures

Set

Ak(n, l) = # k-nc arch diagrams of order n, l isolated nodes

Bk(n, l) = # k-nc RNA structures of n bases, l isolated bases
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Counting k-noncrossing RNA secondary structures

Set

Ak(n, l) = # k-nc arch diagrams of order n, l isolated nodes

Bk(n, l) = # k-nc RNA structures of n bases, l isolated bases

Theorem (Jin, Qin & Reidys, 2008)

Bk(n, l) =

(n−l)/2
∑

b=0

(−1)b
(

n − b

b

)

Ak(n − 2b, l)

where Ak(n, l) is given by the generating function

∞
∑

n=1

n
∑

l=0

Ak(n, l)
xn

n!
= e

x det[Ii−j(2x) − Ii+j(2x)]|k−1
i ,j=1

and Ir (2x) =
∑

∞

j=0 x2r+j/(j!(r + j)!) is hyperbolic Bessel function

of 1st kind of order r .
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The end

Thank you!
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