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Trafficking at synapses

The amazing brain




Trafficking at synapses

Neurons communicate at synapses
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Trafficking at synapses

Synapses can “learn”
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Collingridge et al., Nat. Rev. Neurosci. (2004)



Trafficking at synapses

Synapses “learn” by regulating receptor numbers
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Trafficking at synapses

Receptor trafficking at synapses
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@ constitutively recycled with intracellular stores
@ AMPA receptors turned over in 10-30 mins (or 16 hrs?)

@ immobilized by scaffolding proteins in synapse

o diffuse laterally within membrane



Trafficking at synapses

Receptors diffuse laterally between synapses

a  GIyR + gephyrin mGIuRS + Homer d  AMPAR + synaptic staining
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Triller & Choquet, Nat. Rev. Neurosci. (2003)



Long-range Transport

How are receptors transported to synapses?



Long-range Transport

Synapses located in dendritic spines
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Long-range Transport

Long-range transport of receptors along spiny dendrite

1. somatic exocytosis Synaptic trafficking
2. lateral membrane diffusion
3. surface entry into spine

4. local exo/endocytosis

AMPAR

Groc & Choquet, 2006

@ motor transport along microtubules
o diffusion within dendritic membrane? (Adesnik et al., 2005)



2D Discrete Model

How should we model diffusion-trapping of receptors?



2D Discrete Model

Treat dendritic membrane as cylinder with holes

a receptor

- scaffolding
protein




2D Discrete Model

Diffusion equation on dendritic membrane

ou
S5 = DV?U on Q.
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@ U = receptor concentration

@ ). is rectangle (0, L) x (—=/,m/) minus the holes
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2D Discrete Model

Boundary conditions

@ Periodic bes at y = £7l

® No-flux bcat x=1L,and at x=0
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@ bcs at the holes:
ou Y _ '
—ED—an (r,t) = 27Tp(U(r, t)—R;), re0Q;

@ i = spine neck hopping rate
@ R; = receptor concentration on surface of jth spine
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2D Discrete Model

Treat each spine as having 3 compartments

o—DEG
a AMPA receptor

~ scaffolding protein

P, Q: unbound, bound receptor concentrations in PSD
R, U: free receptor concentrations in spine head, dendrite
C: number of intracellular receptors

k, oEXO:  rates of endocytosis, exocytosis

oDEG, &: rates of degradation, intracellular delivery

h, hopping rates across boundary of PSD, spine neck

a(Z-Q):  rate of binding to scaffolding (Z = scaffolding concentration)

B: rate of unbinding from scaffolding




2D Discrete Model

Steady-state solution

@ All steady-state concentrations at jth spine depend on the
mean value of U on 9€);:

1

U = /Urdr
7 2mep Jog, )




2D Discrete Model

Steady-state solution

@ All steady-state concentrations at jth spine depend on the
mean value of U on 9€);:

1
= / U(r)dr
2mep Jogq;

@ U;'s are determined by solving V2U = 0 in Q. with bcs

Ui




2D Discrete Model
Steady-state solution

@ All steady-state concentrations at jth spine depend on the
mean value of U on 9€);:

1
U = / U(r)dr
7 2mep Jog, )

@ U;’s are determined by solving V2U =0 in Q. with bcs
@ But this is hard because of bcs at the holes!

—eDS(r) = ;T—f'p(U(r) —R), reoQ



2D Discrete Model

Three steps for finding approximate steady-state solution

Q@ Solve assuming U = U; on the boundary of jth hole



2D Discrete Model

Three steps for finding approximate steady-state solution

Q@ Solve assuming U = U; on the boundary of jth hole

@ Singular perturbation: match logarithmic solutions in each
inner region
r—rl=0@)

with Green's function singularities in outer region

lr —rj| = O(1) for all j



2D Discrete Model

Three steps for finding approximate steady-state solution

Q@ Solve assuming U = U; on the boundary of jth hole

@ Singular perturbation: match logarithmic solutions in each
inner region
r—rl=0@)

with Green's function singularities in outer region
lr —rj| = O(1) for all j

@ Solution has N + 1 unknowns: U;'s and integration constant



2D Discrete Model

Three steps for finding approximate steady-state solution

Q@ Solve assuming U = U; on the boundary of jth hole

@ Singular perturbation: match logarithmic solutions in each
inner region
r—rl=0@)

with Green's function singularities in outer region
lr —rj| = O(1) for all j
@ Solution has N + 1 unknowns: U;'s and integration constant

© Substitute this solution into N simplified bcs at holes

—eDZ=(r) = =2 (U; — R)), re o9



2D Discrete Model

Three steps for finding approximate steady-state solution

Q@ Solve assuming U = U; on the boundary of jth hole

@ Singular perturbation: match logarithmic solutions in each
inner region
r—rl=0@)

with Green's function singularities in outer region
lr —rj| = O(1) for all j

@ Solution has N + 1 unknowns: U;'s and integration constant

© Substitute this solution into N simplified bcs at holes
—eDZ=(r) = =2 (U; — R)), re o9

© Conservation condition gives (N + 1)th equation

o=> 7 (U-R)



2D Discrete Model

Effect of € on solution
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@ Dendrite 2um long, circumference 1um
@ One spine at r = (1,0.5)

@ Numerical solutions look similar



2D Discrete Model

Comparison of dendritic receptor concentration

perturbation solution numerical solution
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@ Dendrite 100um long, circumference 1um, ep = 0.1um
@ 100 identical spines spaced 1um apart, all in a row

@ Solutions are almost identical!

@ Similar results if spines are not identical, not in a row



1D Discrete Model

Can we make things simpler?



2D model well-approximated by 1D model

When the aspect ratio L// > 1, we can approximate 2D model by
the following 1D model

U 02U
2t = Po2 — j§:1 6(x = x)ui(Uj — Ry)
- ou = Jsoma7 ou =0.
Ox x=0 Ox x=L



Comparison of models
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@ 2D model as before
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1D Discrete Model

1D model

@ Dendrite 100um long, circumference 1um, ep = 0.1um
@ 100 identical spines spaced 1um apart, all in a row

@ 1D model use same parameters when relevant

@ Solutions are almost identical!



1D Continuum Model

Can we make things even simpler?



1D Continuum Model

Treat spine population as continuous density

If spines are sufficiently dense, treat sum of delta functions as a

density n
ou 0*U
_— = _ = —_ R
=D (U ~ R)
-D —8U = Jsoma’ ou =0.

Ox x=0 Ix x=L



1D Continuum Model

Steady-state solution for identical spines: “cable” equation

@ Assume all parameters are x-independent, then get “cable”
equation for receptor trafficking

d*U ~
— —NU=-A°R
dx?2 v

A= D is length-scale of diffusive coupling



1D Continuum Model

Steady-state solution for identical spines: “cable” equation

@ Assume all parameters are x-independent, then get “cable”
equation for receptor trafficking

d*U ~
— —NU=-A°R
dx?2 v

N =4/ % is length-scale of diffusive coupling

@ Solve using Green's function methods

Jsoma cosh(A(x — L)) =~
- R
e R N VAR




1D Continuum Model

Steady-state receptor concentrations for identical spines
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@ Dendrite 1 mm long

@ 1,000 identical spines spaced 1um apart
@ Two sources of receptors

o at soma
¢ local intracellular delivery



1D Continuum Model

Consequences of diffusive coupling
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1D Continuum Model

Steady-state is nice...
...but what about time-dependent phenomena?



1D Continuum Model

AMPA receptor recycling via thrombin cleavage

HA/M-GIluR2
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Passafaro et al., Nat. Neurosci. (2001)



1D Continuum Model

AMPA receptor recycling via photoinactivation
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1D Continuum Model

Fast or slow recycling of AMPA receptors?
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1D Continuum Model

Simulation of photoinactivation of AMPA receptors

@ No intracellular delivery but source at soma
@ In steady-state t <0

@ At t = 0 all surface AMPA receptors instantaneously

e . "
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1D Continuum Model

Simulation of photoinactivation of AMPA receptors

@ No intracellular delivery but source at soma
@ In steady-state t <0

@ At t = 0 all surface AMPA receptors instantaneously
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@ Rates of exo/endocytosis are fast (10-30 mins)



1D Continuum Model

Rate of recycling depends on distance from soma
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@ Fast exo/endocytosis consistent with slow recycling

@ There are many time scales!
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Future directions

Models with many kinds of receptors (AMPA, NMDA,
kainate, etc.)

Models with receptor function, electrophysiology
Computational learning rules (e.g., STDP)
Role of AMPA receptor trafficking in Alzheimer’s disease

Stochastic models



Intrinsic vs. extrinsic noise of synaptic trafficking

a2 AMPA receptor
- scaffolding protein

@ intrinsic noise: e.g., binding/unbinding

@ extrinsic noise: e.g., fluctuating gate



Time-course of variance during FRAP
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2 receptors

10 receptors

Time-course of variance during Inverse FRAP
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