EXTERIOR BLOCKS OF NONCROSSING PARTITIONS

BERTON A. EARNSHAW

ABSTRACT. This paper defines an exterior block of a noncrossing partition,
then gives a formula for the number of noncrossing partitions of the set [n] with
k exterior blocks. Certain identities involving Catalan numbers are derived
from this formula.

1. INTRODUCTION

A noncrossing partitions is a partition 7 of the set [n] := {1,2,...,n} such
that whenever 1 < a < b < ¢ < d < n and a and ¢ are in the same block of 7w
and b and d are in the same block of 7, then actually a, b, ¢ and d are all in the
same block of . The collection of noncrossing partitions of [n] is denoted by NC,,.
We typically write noncrossing partitions using a ’/’ to delimit the blocks of the
partition and a ’, to delimit the elements within each block. For example, the
partition = = {{1,4,6},{2,3},{5}, {7}, {8,10}, {9}, {11,12}} € NC;3 is typically
written 7 = 1,4,6/2,3/5/7/8,10/9/11,12. Notice that we have written the blocks
in ascending order of their least element. Noncrossing partitions can be conveniently
visualized in their linear representations; that is, we place n nodes 1,2,...,n in
ascending order on a line, and indicate that two elements are in the same block by
drawing an arc connecting the two. All the arcs must be drawn in the same half-
plane. Figure 1 gives the linear representation of 1,4,6/2,3/5/7/8,10/9/11,12. We
will make use of the linear representation of a noncrossing partition throughout this

paper.
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FIGURE 1. Linear representation of 1,4,6/2,3/5/7/8,10/9/11, 12

S

2. EXTERIOR BLOCKS AND THE FUNCTION e(n, k)

For ease of discussion we give a preliminary defintion. Given a block B € 7, we
will denote the least and greatest elements of B by first(B) and last(B), respectively,
and will call them the first and last elements of B, respectively.

Key words and phrases. noncrossing partition, exterior block, Catalan triangle, Catalan
identity.
1



2 BERTON A. EARNSHAW

Definition 2.1. Let m# € NC,,. A block B €  is an interior block of 7 if there
exists a block C' € 7 such that first(C) < first(B) < last(B) < last(C). If B is not
an interior block, then it is an exterior block of .

Intuitively, given a noncrossing partition 7 of [n], an interior block of 7 is one
which is nested inside another block in the linear representation of 7. An exterior
block of 7 is one which is not nested in any other block. Consider Figure 1 which is
the linear representation of 7 = 1,4,6/2,3/5/7/8,10/9/11,12 € NCj4. It is easy to
see that {2,3},{5} and {9} are the interior blocks of 7, while {1,4,6},{7},{8.10}
and {11,12} are the exterior blocks of .

Let E,, 1 be the subset of NC,, consisting of all noncrossing partitions of [n] with
k exterior blocks and define

e(n, k) = |En k|
so that e(n, k) counts the number of noncrossing partitions of [n] with k exterior
blocks. What sort of function is e(n, k)?

Propostion 2.1. e(n, k) = 0 whenever k =0 or k > n.

Proof. If k = 0, we are asking how many noncrossing partitions of [n] have no
exterior blocks. It is easy to see that the block containing 1 is an exterior block of
any noncrossing partition. Thus e(n,0) = 0. Since any partition of [n] can have at
most n blocks, it can have at most n exterior blocks. So if k > n, e(n, k) =0. O

Theorem 2.1. e(n,1) = C,,_1, where C,, = n+_1(27?) s the nth Catalan number.

Proof. Tt is easy to see that e(1,1) =1 = Cj. Assume n > 1. Tt is also easy to see
that a noncrossing partition 7w of [n] with one exterior block necessarily has 1 and n
in the same block. Call this block B (see Figure 2, where n =6, 7 = 1,4,6/2,3/5
and B = {1,4,6}). The partition

m = (m\{B}) U{B\{n}}
is then a noncrossing partition of [n—1] (7’ is simply 7 with the element n removed;

see Figure 3). Define a map ¢ : E,, ; — NC,,_; by the above operation 7 — 7’. The
map ¢ is clearly invertible, with inverse map ¢! given by

¢~ o) = (0 \ {A}) U{A U {n}}
where o € NC,,_; and A is the block of o containing the element 1 (see Figures 4
and 5, where n = 6, 0 = 1,2/3/4,5 and A = {1,2}). Therefore ¢ is a bijection,
proving
e(n,1) = |Ep 1| = INCy—1| = Cp_1.
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FIGURE 2. Linear representation of m = 1,4,6/2,3/5 € Eg 1

Theorem 2.2. e(n, k) =e(n—1,k—1)+e(n,k+1) forn>2 and k > 1.
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FIGURE 3. Linear representation of ' = ¢(w) =1,4/2,3/5 € Es5 o
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FIGURE 4. Linear representation of o = 1,2/3/4,5 € Es 3
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FIGURE 5. Linear representation of ¢~1(c) =1,2,6/3/4,5 € Eg 1

Proof. Clearly e(n—1,k—1) counts the number of noncrossing partitions = of E,, i
having the singleton {n} as a block since 7\ {n} € E,_1 ;1. Thus we want to
show that e(n, k 4+ 1) counts the number of noncrossing partitions of E, j that do
not have {n} as a block. Let E] , be that set.

It is easy to see that if k& € [n — 1] then there exists a noncrossing partition with
k exterior blocks whose block containing n is not a singleton. Thus if E;l i 1S empty,
then necessarily k¥ > n. But then e(n,k + 1) = 0 by Propostion 2.1 and we are
done.

If E;z,k is not empty, then for any = € E;z,k’ let B be the block of m containing n

and let
m' = (x\{B}) U{B\ {n},{n}}
(see Figures 6 and 7, where n = 6, k = 2, 7 = 1,2/3,4,6/5 and B = {3,4,6}).
Now 7’ is a noncrossing partition of [n] with more than k exterior blocks. Let C be
the block of 7’ just to the right of B\ {n} in the linear representation of #’; that
is, last(B \ {n}) + 1 = first(C) (B \ {6} = {3,4} and C' = {5} in Figure 7). Let
7 = e\ {0, ) UCU fn))
(see Figure 8). Now 7" € E,, j41. Define a map ) : E;L,k — E,, p+1 by the above
operation 7 — 7. The map 1) is clearly invertible with inverse map 1! given by

7o) = (0 \ {AH U{D U {n}, A\ {n}}
where 0 € E,, ;41 and A is the block of o containing n and D is the block of o
just to the left of A in the linear representation of ; that is, last(D) 4+ 1 = first(A)
(see Figures 9 and 10, where n = 6, k = 2, 0 = 1,2/3/4,5,6, A = {4,5,6} and
D = {3}). Therefore, 9 is a bijection and
’E;Lk’ = [Epsos1| = e(n, k + 1).

We have proven the desired recurrence. (I

This recurrence relations allows us to write out a table of values for e(n, k) (see
Figure 11). Notice that the values of the first two columns of this table come
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FIGURE 6. Linear representation of m =1,2/3,4,6/5 € Eg 5
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FIGURE 7. Linear representation of 7’ =1,2/3,4/5/6 € E¢ 4

D O T S

J J A%

FIGURE 8. Linear representation of 7"/ = ¢(w) = 1,2/3,4/5,6 € Eg 3
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FIGURE 9. Linear representation of 0 =1,2/3/4,5,6 € Eg 3

from Proposition 2.1 and Theorem 2.1, while the rest of the values come from the
recurrence relation written as e(n,k + 1) = e(n, k) —e(n — 1,k — 1).

Catalan numbers abound in this table. Notice that the second and third columns
(corresponding to kK = 1 and k = 2) contain Catalan numbers. The first column
is, of course, given to us by Theorem 2.1. When k£ = 2 and n > 2, the recurrence
relation plus Proposition 2.1 shows us that

e(n,2)=e(n,1)—e(n—1,0) =Cp_1 —0=Cjp_1.
Notice that the nth row adds up to C,,. This is clear since the sets
Eni,En2,...,Enp
partition NC,,. This fact gives
(2.1) Cr = INCp| = |Up_1En k| = 31 [En k| = Zi_1e(n, k).

Also notice the strong resemblance of this table with the various formulations of
Catalan’s triangle (cf. [1], also sequences A053121, A008315, etc. in [4]). Figure 12
is a typical Catalan triangle. It is also called a Pascal semi-triangle since if w(n, k)
represents the value in the nth row and kth column of this table, then for n > 1
and k > 1, w(n, k) satisfies the recurrence relation

w(n,k) =wn —1,k—1)+wn—1,k+1).
Notice that the diagonals w(2n,0),w(2n —1,1),...,w(n,n) of this triangle are the
rowse(n+1,1),e(n+1,2),...,e(n+ 1,n+ 1) in Figure 11.

Theorem 2.3. e(n, k) = %(271—1@—1).

n—1

Proof. 1t is easy to check that this formula satisfies Proposition 2.1 and Theorems
2.1 and 2.2. O
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FIGURE 10. Linear representation of ¢~ ' (o) =1,2/3,6/4,5 € Ef ,

n\k|O0 1 2 3 4 5 6 7 | 8 |9 10| Total
1 0 1 0 0 0 0 0 0 0100 1
2 0 1 1 0 0 0 0 0 0100 2
3 0 2 2 1 0 0 0 0 0100 5
4 0 5 5 3 1 0 0 0 0100 14
5 0| 14 14 9 4 1 0 0 0100 42
6 0] 42 42 28 14 5 1 0 0100 132
7 0| 132 | 132 90 48 20 6 1 0100 429
8 0| 429 | 429 | 297 | 165 75 27 | 7 1 10| 0 | 1430
9 0| 1430 | 1430 | 1001 | 572 | 275 | 110 | 35 | 8 | 1| 0 | 4862
10 | 0| 4862 | 4862 | 3432 | 2002 | 1001 | 429 | 154 |44 | 9| 1 | 16796
FIGURE 11. Table of values of e(n, k)
n\k|O0O|1]2]|3 4|5 ]|6/|7|8]|9]10]| Total
0 1{0(0|J0O]O0O|O]O]O0O|JO|O]|O 1
1 0Oy1j0(0|J0jO0O|0O]O|O]O] O 1
2 1{0(1]0]0|O0O]0O]0O|JO|O]|O 2
3 0(2j0(1]0|0|0]0O|0O]O]| O 3
4 210 3(0]1]0|0]j0|l0]0O]| O 6
5 0O/5(0(4|0|1|0]0|0]0] O 10
6 510191050 |1]0(l0]0]| O 20
7 0140 (14|06 |0]|1(0]0]| O 35
8 1410 (28] 02007 (0]1]|0]O0 70
9 0 42| 0 (48| 0 |27 0 |8|0|1]| 0| 126
10 [42]1 0 (90, 0|75 0 |35{0|9(0] 1 | 252
FIGURE 12. A Catalan Triangle
3. CATALAN IDENTITIES
Using the formulation e(n, k) = %(2”7:_]“;1) of Theorem 2.3, we can derive two

identities involving Catalan numbers. The first comes by replacing e(n, k) in Equa-
tion 2.1 by this formula:
- “k(2n—k—1
C, = e(n, k)= —( )
; ( ) ; n n—1

The second identity comes by considering the number of ways the element n + 1
can be added to a noncrossing partition m of [n] to get a noncrossing partition 7’
of [n+ 1]. Tt is clear that if = has k exterior blocks, then there are k + 1 ways to

form a new noncrossing partition 7’: k ways by adding the element n + 1 to each of
the exterior blocks, and one way by adding the singleton {n + 1} to 7. Since there
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are e(n, k) noncrossing partitions of [n] with k exterior blocks, there are a total of
(k + 1)e(n, k) noncrossing partitions of [n + 1] gotten in this way. Summing these
formulae over the possible number of exterior blocks gives

- " k(k+1)/2n—k—1
Cn+1:|Ncn+1|:Z(k+1)e(nvk):Z ( n )< 7’L—1 )
k=1 k=1
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