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Abstract. This paper defines an exterior block of a noncrossing partition,
then gives a formula for the number of noncrossing partitions of the set [n] with
k exterior blocks. Certain identities involving Catalan numbers are derived
from this formula.

1. Introduction

A noncrossing partitions is a partition π of the set [n] := {1, 2, . . . , n} such
that whenever 1 ≤ a < b < c < d ≤ n and a and c are in the same block of π
and b and d are in the same block of π, then actually a, b, c and d are all in the
same block of π. The collection of noncrossing partitions of [n] is denoted by NCn.
We typically write noncrossing partitions using a ’/’ to delimit the blocks of the
partition and a ’,’ to delimit the elements within each block. For example, the
partition π = {{1, 4, 6}, {2, 3}, {5}, {7}, {8, 10}, {9}, {11, 12}} ∈ NC12 is typically
written π = 1, 4, 6/2, 3/5/7/8, 10/9/11, 12. Notice that we have written the blocks
in ascending order of their least element. Noncrossing partitions can be conveniently
visualized in their linear representations; that is, we place n nodes 1, 2, . . . , n in
ascending order on a line, and indicate that two elements are in the same block by
drawing an arc connecting the two. All the arcs must be drawn in the same half-
plane. Figure 1 gives the linear representation of 1, 4, 6/2, 3/5/7/8, 10/9/11, 12. We
will make use of the linear representation of a noncrossing partition throughout this
paper.

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1. Linear representation of 1, 4, 6/2, 3/5/7/8, 10/9/11, 12

2. Exterior Blocks and the Function e(n, k)

For ease of discussion we give a preliminary defintion. Given a block B ∈ π, we
will denote the least and greatest elements ofB by first(B) and last(B), respectively,
and will call them the first and last elements of B, respectively.
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Definition 2.1. Let π ∈ NCn. A block B ∈ π is an interior block of π if there
exists a block C ∈ π such that first(C) < first(B) ≤ last(B) < last(C). If B is not
an interior block, then it is an exterior block of π.

Intuitively, given a noncrossing partition π of [n], an interior block of π is one
which is nested inside another block in the linear representation of π. An exterior
block of π is one which is not nested in any other block. Consider Figure 1 which is
the linear representation of π = 1, 4, 6/2, 3/5/7/8, 10/9/11, 12∈ NC12. It is easy to
see that {2, 3}, {5} and {9} are the interior blocks of π, while {1, 4, 6}, {7}, {8.10}
and {11, 12} are the exterior blocks of π.

Let En,k be the subset of NCn consisting of all noncrossing partitions of [n] with
k exterior blocks and define

e(n, k) = |En,k|

so that e(n, k) counts the number of noncrossing partitions of [n] with k exterior
blocks. What sort of function is e(n, k)?

Propostion 2.1. e(n, k) = 0 whenever k = 0 or k > n.

Proof. If k = 0, we are asking how many noncrossing partitions of [n] have no
exterior blocks. It is easy to see that the block containing 1 is an exterior block of
any noncrossing partition. Thus e(n, 0) = 0. Since any partition of [n] can have at
most n blocks, it can have at most n exterior blocks. So if k > n, e(n, k) = 0. ˜

Theorem 2.1. e(n, 1) = Cn−1, where Cn = 1

n+1

(

2n

n

)

is the nth Catalan number.

Proof. It is easy to see that e(1, 1) = 1 = C0. Assume n > 1. It is also easy to see
that a noncrossing partition π of [n] with one exterior block necessarily has 1 and n
in the same block. Call this block B (see Figure 2, where n = 6, π = 1, 4, 6/2, 3/5
and B = {1, 4, 6}). The partition

π′ = (π \ {B}) ∪ {B \ {n}}

is then a noncrossing partition of [n−1] (π′ is simply π with the element n removed;
see Figure 3). Define a map φ : En,1 → NCn−1 by the above operation π 7→ π′. The
map φ is clearly invertible, with inverse map φ−1 given by

φ−1(σ) = (σ \ {A}) ∪ {A ∪ {n}}

where σ ∈ NCn−1 and A is the block of σ containing the element 1 (see Figures 4
and 5, where n = 6, σ = 1, 2/3/4, 5 and A = {1, 2}). Therefore φ is a bijection,
proving

e(n, 1) = |En,1| = |NCn−1| = Cn−1.

˜

1 2 3 4 5 6

Figure 2. Linear representation of π = 1, 4, 6/2, 3/5 ∈ E6,1

Theorem 2.2. e(n, k) = e(n− 1, k − 1) + e(n, k + 1) for n ≥ 2 and k ≥ 1.
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1 2 3 4 5

Figure 3. Linear representation of π′ = φ(π) = 1, 4/2, 3/5 ∈ E5,2

1 2 3 4 5

Figure 4. Linear representation of σ = 1, 2/3/4, 5 ∈ E5,3

1 2 3 4 5 6

Figure 5. Linear representation of φ−1(σ) = 1, 2, 6/3/4, 5 ∈ E6,1

Proof. Clearly e(n−1, k−1) counts the number of noncrossing partitions π of En,k

having the singleton {n} as a block since π \ {n} ∈ En−1,k−1. Thus we want to
show that e(n, k + 1) counts the number of noncrossing partitions of En,k that do
not have {n} as a block. Let E′

n,k be that set.

It is easy to see that if k ∈ [n− 1] then there exists a noncrossing partition with
k exterior blocks whose block containing n is not a singleton. Thus if E′

n,k is empty,

then necessarily k ≥ n. But then e(n, k + 1) = 0 by Propostion 2.1 and we are
done.

If E′

n,k is not empty, then for any π ∈ E′

n,k, let B be the block of π containing n
and let

π′ = (π \ {B}) ∪ {B \ {n}, {n}}

(see Figures 6 and 7, where n = 6, k = 2, π = 1, 2/3, 4, 6/5 and B = {3, 4, 6}).
Now π′ is a noncrossing partition of [n] with more than k exterior blocks. Let C be
the block of π′ just to the right of B \ {n} in the linear representation of π′; that
is, last(B \ {n}) + 1 = first(C) (B \ {6} = {3, 4} and C = {5} in Figure 7). Let

π′′ = (π \ {C, {n}}) ∪ {C ∪ {n}}

(see Figure 8). Now π′′ ∈ En,k+1. Define a map ψ : E′

n,k → En,k+1 by the above

operation π 7→ π′′. The map ψ is clearly invertible with inverse map ψ−1 given by

ψ−1(σ) = (σ \ {A}) ∪ {D ∪ {n}, A \ {n}}

where σ ∈ En,k+1 and A is the block of σ containing n and D is the block of σ
just to the left of A in the linear representation of σ; that is, last(D) + 1 = first(A)
(see Figures 9 and 10, where n = 6, k = 2, σ = 1, 2/3/4, 5, 6, A = {4, 5, 6} and
D = {3}). Therefore, ψ is a bijection and

∣

∣

∣
E′

n,k

∣

∣

∣
= |En,k+1| = e(n, k + 1).

We have proven the desired recurrence. ˜

This recurrence relations allows us to write out a table of values for e(n, k) (see
Figure 11). Notice that the values of the first two columns of this table come



4 BERTON A. EARNSHAW

1 2 3 4 5 6

Figure 6. Linear representation of π = 1, 2/3, 4, 6/5 ∈ E′

6,2

1 2 3 4 5 6

Figure 7. Linear representation of π′ = 1, 2/3, 4/5/6 ∈ E6,4

1 2 3 4 5 6

Figure 8. Linear representation of π′′ = ψ(π) = 1, 2/3, 4/5, 6 ∈ E6,3

1 2 3 4 5 6

Figure 9. Linear representation of σ = 1, 2/3/4, 5, 6 ∈ E6,3

from Proposition 2.1 and Theorem 2.1, while the rest of the values come from the
recurrence relation written as e(n, k + 1) = e(n, k) − e(n− 1, k − 1).

Catalan numbers abound in this table. Notice that the second and third columns
(corresponding to k = 1 and k = 2) contain Catalan numbers. The first column
is, of course, given to us by Theorem 2.1. When k = 2 and n ≥ 2, the recurrence
relation plus Proposition 2.1 shows us that

e(n, 2) = e(n, 1) − e(n− 1, 0) = Cn−1 − 0 = Cn−1.

Notice that the nth row adds up to Cn. This is clear since the sets

En,1,En,2, . . . ,En,n

partition NCn. This fact gives

(2.1) Cn = |NCn| = |∪n
k=1En,k| = Σn

k=1|En,k| = Σn
k=1e(n, k).

Also notice the strong resemblance of this table with the various formulations of
Catalan’s triangle (cf. [1], also sequences A053121, A008315, etc. in [4]). Figure 12
is a typical Catalan triangle. It is also called a Pascal semi-triangle since if w(n, k)
represents the value in the nth row and kth column of this table, then for n ≥ 1
and k ≥ 1, w(n, k) satisfies the recurrence relation

w(n, k) = w(n− 1, k − 1) + w(n− 1, k + 1).

Notice that the diagonals w(2n, 0), w(2n− 1, 1), . . . , w(n, n) of this triangle are the
rows e(n+ 1, 1), e(n+ 1, 2), . . . , e(n+ 1, n+ 1) in Figure 11.

Theorem 2.3. e(n, k) = k
n

(

2n−k−1

n−1

)

.

Proof. It is easy to check that this formula satisfies Proposition 2.1 and Theorems
2.1 and 2.2. ˜
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1 2 3 4 5 6

Figure 10. Linear representation of ψ−1(σ) = 1, 2/3, 6/4, 5 ∈ E′

6,2

n \ k 0 1 2 3 4 5 6 7 8 9 10 Total
1 0 1 0 0 0 0 0 0 0 0 0 1
2 0 1 1 0 0 0 0 0 0 0 0 2
3 0 2 2 1 0 0 0 0 0 0 0 5
4 0 5 5 3 1 0 0 0 0 0 0 14
5 0 14 14 9 4 1 0 0 0 0 0 42
6 0 42 42 28 14 5 1 0 0 0 0 132
7 0 132 132 90 48 20 6 1 0 0 0 429
8 0 429 429 297 165 75 27 7 1 0 0 1430
9 0 1430 1430 1001 572 275 110 35 8 1 0 4862
10 0 4862 4862 3432 2002 1001 429 154 44 9 1 16796

Figure 11. Table of values of e(n, k)

n \ k 0 1 2 3 4 5 6 7 8 9 10 Total
0 1 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 1
2 1 0 1 0 0 0 0 0 0 0 0 2
3 0 2 0 1 0 0 0 0 0 0 0 3
4 2 0 3 0 1 0 0 0 0 0 0 6
5 0 5 0 4 0 1 0 0 0 0 0 10
6 5 0 9 0 5 0 1 0 0 0 0 20
7 0 14 0 14 0 6 0 1 0 0 0 35
8 14 0 28 0 20 0 7 0 1 0 0 70
9 0 42 0 48 0 27 0 8 0 1 0 126
10 42 0 90 0 75 0 35 0 9 0 1 252

Figure 12. A Catalan Triangle

3. Catalan Identities

Using the formulation e(n, k) = k
n

(

2n−k−1

n−1

)

of Theorem 2.3, we can derive two

identities involving Catalan numbers. The first comes by replacing e(n, k) in Equa-
tion 2.1 by this formula:

Cn =
n

∑

k=1

e(n, k) =
n

∑

k=1

k

n

(

2n− k − 1

n− 1

)

.

The second identity comes by considering the number of ways the element n+ 1
can be added to a noncrossing partition π of [n] to get a noncrossing partition π′

of [n + 1]. It is clear that if π has k exterior blocks, then there are k + 1 ways to
form a new noncrossing partition π′: k ways by adding the element n+1 to each of
the exterior blocks, and one way by adding the singleton {n+ 1} to π. Since there
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are e(n, k) noncrossing partitions of [n] with k exterior blocks, there are a total of
(k + 1)e(n, k) noncrossing partitions of [n+ 1] gotten in this way. Summing these
formulae over the possible number of exterior blocks gives

Cn+1 = |NCn+1| =

n
∑

k=1

(k + 1)e(n, k) =

n
∑

k=1

k(k + 1)

n

(

2n− k − 1

n− 1

)

.

References

[1] Richard K. Guy. Catwalks, Sandsteps and Pascal pyramids. J. Integer Seq., 3(1):Article 00.1.6,
1 HTML document (electronic), 2000.

[2] G. Kreweras. Sur les partitions non croisées d’un cycle. Discrete Math., 1(4):333–350, 1972.
[3] Rodica Simion and Daniel Ullman. On the structure of the lattice of noncrossing partitions.

Discrete Math., 98(3):193–206, 1991.
[4] N. J. A. Sloane. The On-line Encyclopedia of Integer Sequences.

Berton A. Earnshaw, Department of Mathematics, Brigham Young University, Provo,

UT 84602 U.S.A.

E-mail address: berton@math.byu.edu


