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AMPA receptor trafficking Introduction

The amazing brain
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AMPA receptor trafficking Introduction

Neurons communicate at synapses
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AMPA receptor trafficking Introduction

Communication at a synapse

Action potential in Ca?* entry causes Receptor-channels open,
nerve terminal vesicle fusion and Na* enters the postsynaptic
opens Ca*channels transmitter release cell and vesicles recycle
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Kandel, Schwartz & Jessel (2000)
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AMPA receptor trafficking Introduction

Synapses can “learn”
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Collingridge et al., Nat Rev Neurosci (2004)
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Synapses “learn” by regulating receptor numbers

Depressed Na ive Potentlated
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AMPA receptor trafficking Introduction

Synapses located in dendritic spines

spine head

spine apparatus

spine neck

Matus, Science (2000)
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AMPA receptor trafficking Introduction

Receptor trafficking at a synapse
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Receptors diffuse laterally between synapses

a GlyR + gephyrin mGIuRS + Homer d AMPAR + synaptic staining

Corfinement index
Caonfinement index
Confinement index
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Triller & Choquet, Nat. Rev. Neurosci. (2003)
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Long-range transport of receptors

1. somatic exocytosis Synaptic trafficking
2. lateral membrane diffusion
3. surface entry into spine

4. local exo/endocytosis

AMPAR

Groc & Choquet, 2006
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AMPA receptor trafficking Outline

Single-spine model (deterministic)

Single-synapse model (stochastic)
2D diffusion model
1D diffusion models
Other diffusion-trapping problems
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Model of single-spine AMPAR trafficking

dR 1
Spine head: i (M[U R] — kR — h[R — P])
dP EXOC
PSD unbound:  — = E[R —Pl—a[Z - QP+ Q@+ 2
d
PSD bound: —Q =a[Z - Q|P - (@
dt
Intracellular: Z—f = —oPXOC _GPEGC L kR +§
B
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ODEG

a AMPA receptor
~ scaffolding protein

BAE & Bressloff, J Neurosci (2006)
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AMPA receptor traffi g Single-spine model

Block exo/endocytosis
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LTP simulation

GluR2/3
GluR1/2

« Activation of GIuR1/2 intracellular pool
« Rapid insertion of receptors into ESM

* AMPARSs transport slot proteins into PSD
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LTD simulation

« Switch from AMPA-GRIP to AMPA-PICK receptor-protein complexes
« Rapid unbinding from PSD and trafficking to ESM followed by endocytosis.

« Unbound scaffolding proteins are degraded.
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AMPA receptor trafficking Single-spine model

Conclusions

@ Significant fraction of PSD receptors are mobile (Groc et al., 2004; Ashby et al.,
2006)

e Requires PSD-ESM barrier (Choquet & Triller, 2003)
® Diffusive impedance of spine neck is significant (asaby et al., 2006)

© Insertion of GluR1/2 during LTP must combine synaptic targeting

e Requires increased hopping and binding rate (schnell et al., 2002) and
scaffolding (shi et al., 2001)

O Slow exchange of GIuR1/2 with GluR2/3 after LTP requires
maintenance of additional binding sites (vccormack et al., 2006)

@ LTD requires loss of binding sites (colledge et al., 2003)
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AMPA receptor trafficking Stochastic single-synapse model

Single-spine model (deterministic)
Single-synapse model (stochastic)
2D diffusion model

1D diffusion models

Other diffusion-trapping problems
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Stochastic model of trafficking at PSD

dp

5= AZ—qp+Bg—ppto
dq

A _ (7 - _

7 = Z—ap—Faq

]
a AMPA receptor
- scaffolding protein

Bressloff & BAE: Biophys J (2009)
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AWV IRAWEISTIITR YN -8l Stochastic single-synapse model

Stochastic model of trafficking at PSD

db _

5= NZ—aqp+Pg—ppto

dg

Pn.m(t) = Prob{n unbound, m bound at time t}

Bressloff, Earnshaw (Utah)

7 = Z—ap—Faq

Multiple scales of AMPAR trafficking

a AMPA receptor
- scaffolding protein

Bressloff & BAE: Biophys J (2009)
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AMPA receptor trafficking Stochastic single-synapse model

Stochastic model of trafficking at PSD
% =-a(Z—-q)p+Bq—up+o
dq
5~ Z—ap—Faq

Pn.m(t) = Prob{n unbound, m bound at time t}

dPp.m
g = OPn-1m+p(n+1)Pni1m

+taln+1)[Z = (m=1)]Pri1m-1 & aupa reospor
+ B(m + 1)Pn—1,m+1

— [0+ pn+an(Z —m)+ m]Pp m

Bressloff & BAE: Biophys J (2009)
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AMPA receptor trafficking Stochastic single-synapse model

Stochastic model of trafficking at PSD
% =-a(Z—-q)p+Bq—up+o
dq
5~ Z—ap—Faq

Pn.m(t) = Prob{n unbound, m bound at time t}
dPp.m
d—t’ = UPn—l,m + M(n + 1)Pn+1,m
+a(n+ DIZ = (m— DlPasrms
+ B(m+1)Py_1 mt1
— [0+ pn+an(Z —m)+ m]Pp m
Y-

0< Hopen — Hhclosed = 0
T+

o(t) = Cu(t) (C bath conc.)

stochastic gate :
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Analysis in two regimes: un/saturated binding sites

e Can do math in two regimes:

e unsaturated binding sites: m(t) < Z for all t (i.e., an(t) < B)
e saturated binding sites: m(t) = Z for all t (i.e., an(t) > 3)
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Analysis in two regimes: un/saturated binding sites

e Can do math in two regimes:

e unsaturated binding sites: m(t) < Z for all t (i.e., an(t) < B)
e saturated binding sites: m(t) = Z for all t (i.e., an(t) > 3)

e Unsaturated regime: master equation is linear in n,m
e Generating function

UVt ZZUVan

n=0 m=0

satisfies first-order linear PDE

% (O~ 1)+ 0z~ V1T~ B~ )5 = o{t)(u—1)6
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Analysis in two regimes: un/saturated binding sites

e Can do math in two regimes:

e unsaturated binding sites: m(t) < Z for all t (i.e., an(t) < B)
e saturated binding sites: m(t) = Z for all t (i.e., an(t) > 3)

e Unsaturated regime: master equation is linear in n,m
e Generating function

UVt ZZUVan

n=0 m=0

satisfies first-order linear PDE

% (O~ 1)+ 0z~ V1T~ B~ )5 = o{t)(u—1)6

e Obtain mean, variance from derivatives of G

oG oG
Eu(”) = Du ) Eu(m) = v
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Averaging over realizations of p

e Can show that

E(n) = (Eu(n)) = C + (no — C)(N11) + (mo — CaZ/B)(Na1)

u(n
E(m) = (Eu(m)) = CaZ/B + (no — C)(N12) + (mo — CaZ/B)(N22)

where

N(t) =exp <— /Ot./\/l(t')dt') . M(t) = (#(t)_EaZ —Baz>
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Averaging over realizations of p

e Can show that

E(n) = (E.(n)) = C + (ng — C)(N11) + (mo — CaZ /B)(Na1)
E(m) = (Eu(m)) = CaZ/B + (ng — C){N12) + (mg — CaZ/B)(Na2)

where
N(t) =exp <— /Ot./\/l(t')dt') . M(t) = (#(t)_EaZ —Baz>

e Can derive a system of ODEs for the averages of the entries of A/
using method of Kubo and Zwanzig
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Saturated binding sites

e Since m(t) = Z for all t, master equation becomes

= WO CPo 1 + (14 DPya(8) — (C+ n)P,)
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Saturated binding sites

e Since m(t) = Z for all t, master equation becomes

= WO CPo 1 + (14 DPya(8) — (C+ n)P,)

e Brown et al. (Biophys J, 2000) showed that

E(n) = (np — C){w) + C
Var(n) = E(n) — no(w?) + (ng — C)* ((w?) — (w)?)

wen= (1) e (e T () 0=

_ 4+ M — -
= c— — |
Y+ + - Y+ + -

[e]
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AWV IRAWEISTIITR YN -8l Stochastic single-synapse model

FRAP and inverse FRAP experiments

NN
—_

unbleached receptor
( bleached receptor
Bressloff, Earnshaw (Utah)
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AMPA receptor trafficking Stochastic single-synapse model

Simulations of FRAP and inverse FRAP
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AMPA receptor trafficking 2D diffusion model

Single-spine model (deterministic)

Single-synapse model (stochastic)

2D diffusion model
1D diffusion models
Other diffusion-trapping problems
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AWV AW RT3 2D diffusion model

Treat dendritic membrane as cylinder with holes

A receptor

- scaffolding
protein

Xx=L

Bressloff, BAE & Ward, SIAM J Appl Math (2008)
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2RLdiffusionimode)
Diffusion equation on dendritic membrane

ou 5
E—DV U on Q.
y =i
Qe
o O 5 O
@ O O
y =i
x=0 x=L

e U = receptor concentration

o Q. is rectangle (0, L) x (—=/,7/) minus the holes
Qj:{rEQO\|r—rj|§€p}, j=1...,N
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Boundary conditions

e Periodic bcs at y = 7/

e No-flux bcat x =1L, andat x =0

ou o
_Da = Jsoma = 2—

7l
e bcs at the holes:

ou Y . '
—D%(r, t) = 27rep(U(r’ t)—R;), re0Q;

e 1 = spine neck hopping rate
e R; = receptor concentration on surface of jth spine
y=m
Qe
o O o O
@
O O
y =-mi
x=0 x=L
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2RLdiffusionimode)
Treat each spine as before

B [
— > 0
Q P <«——> R «—t1—>uU
a(Z Q) I
PSD . Spine Head

O-D EG

& AMPA receptor
- scaffolding protein
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2RLdiffusionimode)
Steady-state solution

e Assume concentrations in jth spine see mean value of U on 9€);:

1
2mep Jogq;

U; U(r)dr
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Steady-state solution

e Assume concentrations in jth spine see mean value of U on 9€);:

1
2mep Jogq;

U; U(r)dr

e Uj's are determined by solving V2U = 0 in Q. with boundary
conditions
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Steady-state solution

e Assume concentrations in jth spine see mean value of U on 9€);:

1
2mep Jogq;

U= U(r)dr

e Uj's are determined by solving V2U = 0 in Q. with boundary
conditions

e But this is hard because of boundary conditions at the holes!

_EDa_U( )= 29

B (U(r) = Ryj), reoqy

2mp
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AWV AW RT3 2D diffusion model

Three steps for finding approximate steady-state solution
® Solve assuming U = U; on the boundary of jth hole
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AMPA receptor trafficking 2D diffusion model

Three steps for finding approximate steady-state solution

® Solve assuming U = U; on the boundary of jth hole

e Singular perturbation: match logarithmic solutions in each inner
region

Ir —rj| = O(e)

with Green's function singularities in outer region

Ir —rj| = O(1) for all j
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AMPA receptor trafficking 2D diffusion model

Three steps for finding approximate steady-state solution

® Solve assuming U = U; on the boundary of jth hole
e Singular perturbation: match logarithmic solutions in each inner

region
[r—rj| = 0O(e)
with Green's function singularities in outer region

Ir —rj| = O(1) for all j

e Solution has N + 1 unknowns: U;'s and integration constant
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AMPA receptor trafficking 2D diffusion model

Three steps for finding approximate steady-state solution

® Solve assuming U = U; on the boundary of jth hole

e Singular perturbation: match logarithmic solutions in each inner
region

r—rj|=0()
with Green's function singularities in outer region
Ir —rj| = O(1) for all j

e Solution has N + 1 unknowns: U;'s and integration constant

® Substitute this solution into N simplified bcs at holes

Uy = 14

= S -R). reon,
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AMPA receptor trafficking 2D diffusion model

Three steps for finding approximate steady-state solution

® Solve assuming U = U; on the boundary of jth hole

e Singular perturbation: match logarithmic solutions in each inner
region

r—rj|=0()
with Green's function singularities in outer region
Ir —rj| = O(1) for all j

e Solution has N + 1 unknowns: U;'s and integration constant

® Substitute this solution into N simplified bcs at holes

Uy = 14

= S -R). reon,

©® Conservation condition gives (N + 1)th equation

o= 7 (U-R)
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2RLdiffusionimode)
Comparison of dendritic receptor concentration

perturbation solution numerical solution

-2

receptor concentration [pm™]

w
a1
S

= O WS
coo oMo ;

e Dendrite 100um long, circumference 1um, ep = 0.1um
e 100 identical spines spaced 1um apart, all in a row

e Solutions are almost identical!

e Similar results if spines are not identical, not in a row
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AMPA receptor trafficking 1D diffusion models

Single-spine model (deterministic)

Single-synapse model (stochastic)
2D diffusion model

1D diffusion models
Other diffusion-trapping problems
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1D diffusion model with discrete spines
2D model well-approximated by 1D model

When the aspect ratio L// > 1, we can approximate 2D model by the
following 1D model

U PU
o = Poz JZ_;&X —x)ui(Uj — R)
ou ou
— _ = J ma s _—_ = O
Ox |, —o soma Ox|,—;

Bressloff & BAE, PRE (2007)
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AMPA receptor trafficking 1D diffusion model with discrete spines

Comparison of models

2D model 1D model
B 45 D4s
—_U. —_U.

40f 40

35} 35;°
& &
2 30r 230
o o
§ 25¢ § 25

201 20

15¢ 15

1 : 1 : :

00 20 40 60 80 100 o0 20 40 60 80 100
x [um] X [um]
e 2D model as before
e Dendrite 100um long, circumference 1um, ep = 0.1um
e 100 identical spines spaced 1um apart, all in a row
e 1D model use same parameters when relevant
e Solutions are almost identical!
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AMPA receptor trafficking 1D diffusion model with density of spines

Can we make things even simpler?
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1D diffusion model with density of spines
Treat spine population as continuous density

If spines are sufficiently dense, treat sum of delta functions as a density n

ou U
51 = Paz — nu0x)(U = R)
ou oU

P oax Y = Jsoma, =0.

Ox |,

BAE & Bressloff, J Comput Neurosci (2008)
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1D diffusion model with density of spines
Steady-state solution for identical spines: “cable” equation

e Assume all parameters are x-independent, then get “cable” equation
for receptor trafficking

d?U =
— —N*U=-A’R
dx? v

N=4/ % is length-scale of diffusive coupling
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1D diffusion model with density of spines
Steady-state solution for identical spines: “cable” equation

e Assume all parameters are x-independent, then get “cable” equation
for receptor trafficking

d?U =
— —N*U=-A’R
dx? v

N=4/ % is length-scale of diffusive coupling

e Solve using Green's function methods

_ Jsoma cosh(A(x — L)) 5
V) = =5 —Rsmh(an) TR
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AMPA receptor trafficking 1D diffusion model with density of spines

Steady-state receptor concentrations for identical spines

T 180F = concentration in dendrite {

= number in PSD

——number bound in PSD

60\\

IN
)

number or con

n
o

o

distance from soma [mm]

e Dendrite 1 mm long

0 01 02 03 04 05 06 07 08 09 1

100)

%efluorescence ( cb

T XL E

-
= k3
= =

e 1,000 identical spines spaced 1um apart

e Two sources of receptors

e at soma

e local intracellular delivery

Bressloff, Earnshaw (Utah)

Multiple scales of AMPAR trafficking

Piccini & Malinow, 2002

=== GIuR1/2
-+ GluR2/3

20 40 60 80 100 120
distance from the cell body (um)
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1D diffusion model with density of spines
Consequences of diffusive coupling

10-fold reduction in 10-fold increase in
rate of exocytosis rate of endocytosis
in gray region in gray region
80 80
700 1 70
60" 1 60
4 0
o 501 S 50
o o
[ 7]
R CE R EE P PR P CE LR L EREPERE g 40
Bl T———— ] @ 30
[+ % o
201 « = wpefore perturbation 20
10t = after perturbation 1 10
% 20 40 60 80 100 120 140 160 180 200 % 20 40 60 80 100 120 140 160 180 200
distance from soma [pm] distance from soma [pm]
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AMPA receptor trafficking 1D diffusion model with density of spines

Steady-state is nice...
...but what about time-dependent phenomena?
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1D diffusion model with density of spines
AMPA receptor recycling via thrombin cleavage

HA/T-GIuR2

thrombin

Surface =

Intra-
cellular

Passafaro et al., Nat. Neurosci. (2001)
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AMPA receptor trafficking 1D diffusion model with density of spines

AMPA receptor recycling via photoinactivation

) { '
@5 ? @\"—) Insertion 2 i\)
K\zﬁi’lﬂ ° T k) -8

i l ﬁ) @J> i‘— —!ﬁ’) Y

] Functional Receptor © ANQX i UV ﬂ Photoinactivated Receptor

B uv %X ANQX= + UV c Pre Post Qverlay

50 pAL_
1s

—
Glu
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AMPA receptor trafficking 1D diffusion model with density of spines

Fast or slow recycling of AMPA receptors?

Percent of steady state

100+

Bressloff, Earnshaw (Utah)

Passafaro et al., 2001

W HA/T-GIuR2
CIHA/T-GIuRT
75
50- -
. /,// - i
251 2 o
OQ{i :“_——-—-/—‘—-fﬁni,n = | | |

Time (min)

Sucrose-evoked Current (%)

Adesnik et al., 2005
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Pre Oh 075h 2h 3h

200 pA L
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6h 16h
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T T T T

—
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1D diffusion model with density of spines
Simulation of photoinactivation of AMPA receptors

QT
80
E 70 [
5 607
8 50
2 - E ES ES EE A
g 407 PR b ]
> 4
o 307 p 1
3 20 ’ — 10 um ]
e &
o ’ = =300 pm
10 | o
9
O0246 8 10 12 14 16 18 20 22 24
time [hr]
Fast insertion Depletion of Recovery of Replacement of
from pool pool pool bound AMPARSs
—v
PSD QQ QQ QQ QQ N inactive AMPAR
NN (W 2 (Y ) A active AMPAR

> scaffolding protein

PR R T

pool
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AMPA receptor trafficking Other diffusion-trapping problems

Single-spine model (deterministic)

Single-synapse model (stochastic)

2D diffusion model

1D diffusion models

Other diffusion-trapping problems
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CaMKII translocation waves
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Rose et al., Neuron (2009)
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AMPA receptor trafficking Other diffusion-trapping problems

Diffusion-activation model of CaMKII translocation waves
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Equations for diffusion-activation model

op 0%p

5t DW — kap

Oa 9%a

T DW + kap — ha
Os

— =h

ot .

e p = concentration of primed CaMKII in shaft
e a = concentration of activated CaMKII in shaft
e s = concentration of activated CaMKIl in spines

e k, h = rate of activation, translocation

BAE & Bressloff, In prep.
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Simulation of diffusion-activation model
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Calculation of wave speed

e When h =0 (no translocation), recover Fisher's equation with speed

c =2V Dk
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Calculation of wave speed

e When h =0 (no translocation), recover Fisher's equation with speed
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Calculation of wave speed

e When h =0 (no translocation), recover Fisher's equation with speed

c =2V Dk

e When h # 0, wave speed is

c=2\/D(k—h)
a2 b 3
~ —
™~ 225
1.5 \\ g
= N — 2
[a) N ©
S AN T 15
05 \ 205 caMKIl
-—Cal o}
\| g- CaMKIIp
0 ol
0 02 04 06 08 1 0 0.5 1 15 2
h/k activation rate k [1/s]

e Wave propagation failure when k < h
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Other projects with diffusion-trapping models

e other heterosynaptic molecules, e.g. PSD-95
e changes in spine volume during late-phase LTP

e mRNA transport/capture/translation
e F-actin regulation/stabilization by AMPA receptors

e protein transport/capture during synaptogenesis, e.g. NMDA
receptors

o AMPA receptor trafficking in more detailed model of PSD
e put all the pieces together!
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