
Math 299 Recitation 7: Existence Proofs and Mathematical Induction

Existence proofs: To prove a statement of the form ∃x ∈ S, P (x), we give either a
constructive or a non-contructive proof. In a constructive proof, one proves the statement
by exhibiting a specific x ∈ S such that P (x) is true. In a non-constructive proof, one
proves the statement using an indirect proof such as a proof by contradiction. Thus, one
might prove that the negation ∀x ∈ S,∼ P (x) is false by deriving a contradiction.

Example of a constructive proof: Suppose we are to prove

∃n ∈ N, n is equal to the sum of its proper divisors.

Proof: Let n = 6. The proper divisors of 6 are 1, 2, and 3. Since 1 + 2 + 3 = 6, we have
proved the statement.

Exercise 1: Give another proof of this statement by finding a different example. (Hint: The
smallest example larger than 6 happens to be a number between 25 and 30.)

An integer which is equal to the sum of its proper divisors is called a perfect number. An
open problem is to prove or disprove the following statement: there exists an odd perfect
integer.

Example of a non-constructive proof: Suppose we are to prove

∀x ∈ Q∃n ∈ N, x ≤ n.

Proof: Suppose, by way of contradition, that there exists an x ∈ Q such that x > n for
every n ∈ N. Since 1 ∈ N, we have that x > 1. Therefore, x = a/b for some a, b ∈ N such
that a > b. Since a ∈ N, a/b > a. This implies that 1/b > 1; and thus 1 > b, which is a
contradiction (since b ∈ N).

Exercise 2: The statement in the previous example can be proved by giving a construction. Give
a constructive proof that

∀x ∈ Q∃n ∈ N, x ≤ n.

Intermediate Value Theorem. Suppose that f(x) is a continuous function on an
interval [a, b]. If y is a real number between f(a) and f(b), then there exists c ∈ (a, b)
such that f(c) = y.

Exercise 3: Apply the intermediate value theorem to give a non-constructive proof that for every
y ∈ [−1, 1], there exists an x ∈ [−π/2, π/2] such that sinx = y. You may assume that
f(x) = sinx is continuous.
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Disproving existence statements: To disprove a statement of the form ∃x ∈ S, P (x),
we prove the negation, ∀x ∈ S,∼ P (x).

Example of disproving an existence statement: Suppose we are to disprove that
there exists an n ∈ Z such that n2 ≡ 3 (mod 7).

Proof: We prove that for every n ∈ Z, n2 is not congruent to 3 modulo 7. Let n ∈ Z.
Then n = 7k + r for some k ∈ Z and some r ∈ {0, 1, . . . , 6}. Thus, n ≡ r. We consider the
six cases:

n n2 (mod 7)

0 0
1 1
2 4
3 2
4 2
5 4
6 1

Therefore, n2 is not congruent to 3 modulo 7.

Exercise 4 Disprove the following statement: there exists a real solution to the equation x4 −
2x2 = −2.

Principle of Mathematical Induction: Let n ∈ N and let P (1), P (2), · · · be state-
ments. Suppose that

(1) P (1) is true, and
(2) ∀n ∈ N, the implication P (n) =⇒ P (n+ 1) is true.

Then P (n) is true for all n ∈ N.

Caution: Both (1) and (2) must hold.

Exercise 5 Find the error in the following “proof”:

If n+1 < n, then by adding 1 to both sides, n+2 < n+1. Therefore, by mathematical
induction, n+ 1 < n for every n ∈ N.

Exercise 6 Find the error in the following “proof”:

Let n = 1. Then n < 100. Now let n ∈ N. Suppose that n − 1 < 100. Since n is
an integer, we have that n − 1 ≤ 99. Therefore, n ≤ 100. Hence, by mathematical
induction, ∀n ∈ N, n ≤ 100.

Example of Proof by Mathematical Induction: Let a ∈ R and let b1, b2, · · · , bn ∈
R. We will prove that

a(b1 + b2 + · · ·+ bn) = ab1 + ab2 + · · ·+ abn.

Proof: Let n = 1. Then a(b1) = ab1 is true. Let n = 2. Then a(b1 + b2) = ab1 + ab2 by
the distributive property:

∀x, y, z ∈ R, x(y + z) = xy + xz.
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Assume that a(b1 + b2 + · · · + bn) = ab1 + ab2 + · · · abn. (This is called the inductive
hypothesis.) Then,

a(b1 + b2 + · · ·+ bn+1) = a(b1 + b2 + · · ·+ bn) + abn+1

by the distributive property (using b1 + b2 + · · · bn in the role of y). By the inductive
hypothesis,

a(b1 + b2 + · · ·+ bn) + abn+1 = ab1 + ab2 + · · ·+ abn + abn+1.

Therefore, by the principle of mathematical induction, ∀n ∈ N, a(b1 + b2 + · · · + bn) =
ab1 + ab2 + · · ·+ abn.

Comments on the Proof: We verified n = 1 separately as this was an exceptional
case. We verified n = 2 using the distributive property. This method also worked to
prove the implication P (n) =⇒ P (n + 1). This situation is not uncommon. Sometimes
a statement is not true for the first positive integers or these statements might be true
but for exceptional reasons. The Principle of Mathematical Induction applies if you have
a sequence of statements P (n) for all n greater than or equal to some k ∈ Z (possibly a
negative integer). Refer to section 6.2 for additional discussion.

Exercise 7 Let x and y be nonnegative real numbers such that x ≤ y. Use mathematical induction
to prove that

∀n ∈ N, xn ≤ yn.

Exercise 8 Use induction to prove that for every positive integer n, n! ≤ nn.

Additional Exercises:

1. Prove that there exists and irrational number in the interval (10−2014, 10−2013).

2. Generalize the previous exercise: prove that every nonempty open interval contains
an irrational number.
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Math 299 Quiz 7

Please answer each question in the space provided. Use complete sentences and correct
mathematical notation to write your answers. You have 20 minutes to complete this quiz.

1. (5 points) Use induction to prove that for each n ∈ N,

1 + 2 + . . .+ n =
n(n+ 1)

2
.

2. (5 points) Prove or disprove the statement: “The number 1 + n+ n2 is odd for every
integer n.”



3. (5 points) Let x ∈ R and assume that x 6= 1. Use induction to prove that for each
nonnegative integer n,

1 + x+ x2 + · · ·+ xn =
1− xn+1

1− x
.

You must use induction to receive full credit.


