The Natural Logarithm

*** Definition and Properties of the Natural Logarithm**

The **natural logarithm** of *x*, written ln *x*, is the power of *e* needed to get *x*. In other words,

 $\ln x = c$ means $e^c = x$.

The natural logarithm is sometimes written \log_e^x . ln *x* is not defined if *x* is negative or 0.

Properties of the Natural logarithm

 $ln(AB) = ln A + ln B$ (Product Rule) $\ln\left(\frac{A}{R}\right)$ *B* \setminus = ln *A* − ln *B* (Quotient Rule) $\ln (A^p) = p \ln A$ (Power Rule) $\ln e^x = x$ $e^{\ln x} = x$ In addition, $\ln 1 = 0$ and $\ln e = 1$.

*** Solving Equations Using Logarithms**

Example 1 *Solve* 130 = 2^t *for t using natural logarithms.*

Example 2 Solve $100 = 25(1.5)^t$ for t using natural logarithms.

Example 3 *Solve* $5 = 2e^t$ *for t using natural logarithms.*

Example 4 *Solve* $5e^{3t} = 8e^{2t}$ *for t using natural logarithms.*

Example 5 *Solve* $7 \cdot 3^t = 5 \cdot 2^t$ *for t using natural logarithms.*

*** Exponential Functions with Base** *e*

Writing $a = e^k$, so $k = \ln a$, any exponential function can be written in two forms $P = P_0 a^t$ or $P = P_0 e^{kt}$. If $a > 1$, we have exponential growth; if $0 < a < 1$, we have exponential decay. If $k > 0$, we have exponential growth; if $k < 0$, we have exponential decay. *k* is called the continuous growth or decay rate.

Example 6 *A town's population is 2000 and growing at* 5% *a year.*

- *(a) Find a formula for the population at time t years from now assuming that* 5% *per year is an annal rate.*
- *(b) Find a formula for the population at time t years from now assuming that* 5% *per year is a continuous annual rate.*

Example 7 (a) Convert the function $P = 20 e^{-0.5t}$ to the form $P = P_0 a^t$.

- *(b) Convert the function* $P = P_0 e^{0.2t}$ *to the form* $P = P_0 a^t$ *.*
- (*c*) Convert the function $P = 10 (1.7)^t$ to the form $P = P_0 e^{kt}$.
- *(d)* Convert the function $P = 4(0.55)^t$ to the form $P = P_0e^{kt}$.

Which of the functions above represents exponential growth and which represents exponential decay?

***Exponential Growth and Decay**

Many quantities in nature change according to an exponential growth or decay function of the form

 $P = P_0 e^{kt}$,

where P_0 is the initial quantity and k is the continuous growth or decay rate.

Example 8 *In 1990, the population of Africa was 643 million and by 2000 it had grown to 819 million.*

- *(a) Assuming the population increases exponentially at a continuous rate, find a formula for the population of Africa as a function of time t in years since 1990.*
- *(b) By which year will Africa's population reach 2000 million?*

*** Doubling Time and Half-Life**

The **doubling time** of an exponentially increasing quantity is the time required for the quantity to double.

The **half-life** of an exponentially decaying quantity is the time required for the quantity to be reduced by a factor of one half.

Example 9 *Find the doubling time of a quantity that is exponentially increasing by an annual rate of* 10% *per year.*

Example 10 *The quantity of ozone, Q, is decaying exponentially at a continuous rate of* 0.25% *per year. What is the half-life of ozone?*

Example 11 *Strontium-90 is a waste product from nuclear reactors, which decays exponentially The halflife of strontium-90 is 29 years. Estimate the percent of original strontium-90 remaining after 100 years?*

*** Financial Applications: Compound Interest**

An amount *P*⁰ is deposited in an account paying interest at a rate of *r* per year. Here *r* is the decimal representation of the percentage. Let P_0 be the initial deposit. Let P be the balance in the account after *t* years.

If interest is **compounded annually**, then $P = P_0 (1 + r)^t$.

If interest is **compounded continuously**, then $P = P_0 e^{rt}$, where e is the natural base.

Example 12 *If you deposit* \$3000 *in an account earning interest at an* 8% *annual rate. How much is in the account after 10 years if the interest is compounded*

(a) Annually?

(b) Continuously?

Example 13 *If* 10, 000 *is deposited in an account paying* 10% *interest per year, compounded continuously, how long will it take for the balance to reach* 25, 000*?*

*** Present and Future Value**

The **future value**, *B*, of a payment, *P*, is the amount to which the *P* would have grown if deposited today in an interest-bearing bank account.

The **present value**, *P*, of a future payment, *B*, is the amount that would have to be deposited in a bank account today to produce exactly *B* in the account at the relevant time in future.

Suppose *B* is the *future value* of *P* and *P* is the *present value* of *B*. If interest is compounded annually at a rate *r* for *t* years, then

$$
B = P(1 + r)t, \qquad \text{or equivalently,} \qquad P = \frac{B}{(1 + r)t}.
$$

If interest is compounded continuously at a rate *r* for *t* years, then

$$
B = Pe^{rt}
$$
, or equivalently, $P = \frac{B}{e^{rt}} = Be^{-rt}$.

Example 14 *Find the future value in 8 years of a* \$10, 000 *payment today, if the interest rate is* 3% *per year compounded continuously.*

Example 15 *Find the present value of an* \$8000 *payment to be made in 5 years. The interest rate is* 4% *per year compounded annually.*