The Natural Logarithm * Definition and Properties of the Natural Logarithm

The **natural logarithm** of *x*, written ln *x*, is the power of *e* needed to get *x*. In other words,

 $\ln x = c$ means $e^c = x$.

The natural logarithm is sometimes written \log_e^x . $\ln x$ is not defined if x is negative or 0.

Properties of the Natural logarithm

 $\ln(AB) = \ln A + \ln B$ (Product Rule) $\ln\left(\frac{A}{B}\right) = \ln A - \ln B \qquad (\text{Quotient Rule})$ $\ln\left(A^{p}\right) = p\ln A \qquad \text{(Power Rule)}$ $\ln e^x = x$ $e^{\ln x} = x$ In addition, $\ln 1 = 0$ and $\ln e = 1$.

* Solving Equations Using Logarithms

Example 1 Solve $130 = 2^t$ for t using natural logarithms.

Example 2 Solve $100 = 25 (1.5)^t$ for t using natural logarithms.

Example 3 Solve $5 = 2e^t$ for t using natural logarithms.

Example 4 Solve $5e^{3t} = 8e^{2t}$ for t using natural logarithms.

Example 5 Solve $7 \cdot 3^t = 5 \cdot 2^t$ for t using natural logarithms.

* Exponential Functions with Base *e*

Writing $a = e^k$, so $k = \ln a$, any exponential function can be written in two forms $P = P_0 a^t$ or $P = P_0 e^{kt}$. If a > 1, we have exponential growth; if 0 < a < 1, we have exponential decay. If k > 0, we have exponential growth; if k < 0, we have exponential decay. k is called the continuous growth or decay rate. **Example 6** A town's population is 2000 and growing at 5% a year.

- (a) Find a formula for the population at time t years from now assuming that 5% per year is an annal rate.
- *(b) Find a formula for the population at time t years from now assuming that* 5% *per year is a continuous annual rate.*

Example 7 (a) Convert the function $P = 20 e^{-0.5t}$ to the form $P = P_0 a^t$.

- (b) Convert the function $P = P_0 e^{0.2t}$ to the form $P = P_0 a^t$.
- (c) Convert the function $P = 10 (1.7)^t$ to the form $P = P_0 e^{kt}$.
- (d) Convert the function $P = 4 (0.55)^t$ to the form $P = P_0 e^{kt}$.

Which of the functions above represents exponential growth and which represents exponential decay?

*Exponential Growth and Decay

Many quantities in nature change according to an exponential growth or decay function of the form

 $P = P_0 e^{kt},$

where P_0 is the initial quantity and k is the continuous growth or decay rate.

Example 8 In 1990, the population of Africa was 643 million and by 2000 it had grown to 819 million.

- (a) Assuming the population increases exponentially at a continuous rate, find a formula for the population of Africa as a function of time t in years since 1990.
- (b) By which year will Africa's population reach 2000 million?

* Doubling Time and Half-Life

The **doubling time** of an exponentially increasing quantity is the time required for the quantity to double.

The **half-life** of an exponentially decaying quantity is the time required for the quantity to be reduced by a factor of one half.

Example 9 Find the doubling time of a quantity that is exponentially increasing by an annual rate of 10% per year.

Example 10 *The quantity of ozone, Q, is decaying exponentially at a continuous rate of* 0.25% *per year. What is the half-life of ozone?*

Example 11 *Strontium-90 is a waste product from nuclear reactors, which decays exponentially The half-life of strontium-90 is 29 years. Estimate the percent of original strontium-90 remaining after 100 years?*

* Financial Applications: Compound Interest

An amount P_0 is deposited in an account paying interest at a rate of r per year. Here r is the decimal representation of the percentage. Let P_0 be the initial deposit. Let P be the balance in the account after t years.

If interest is **compounded annually**, then $P = P_0 (1 + r)^t$.

If interest is **compounded continuously**, then $P = P_0 e^{rt}$, where *e* is the natural base.

Example 12 If you deposit \$3000 in an account earning interest at an 8% annual rate. How much is in the account after 10 years if the interest is compounded

(a) Annually?

(b) Continuously?

Example 13 *If* 10,000 *is deposited in an account paying* 10% *interest per year, compounded continuously, how long will it take for the balance to reach* 25,000?

* Present and Future Value

The **future value**, *B*, of a payment, *P*, is the amount to which the *P* would have grown if deposited today in an interest-bearing bank account.

The **present value**, *P*, of a future payment, *B*, is the amount that would have to be deposited in a bank account today to produce exactly *B* in the account at the relevant time in future.

Suppose *B* is the *future value* of *P* and *P* is the *present value* of *B*. If interest is compounded annually at a rate *r* for *t* years, then

$$B = P(1 + r)^t$$
, or equivalently, $P = \frac{B}{(1 + r)^t}$.

If interest is compounded continuously at a rate r for t years, then

$$B = P e^{rt}$$
, or equivalently, $P = \frac{B}{e^{rt}} = B e^{-rt}$.

Example 14 *Find the future value in 8 years of a* \$10,000 *payment today, if the interest rate is* 3% *per year compounded continuously.*

Example 15 *Find the present value of an* \$8000 *payment to be made in 5 years. The interest rate is* 4% *per year compounded annually.*