
Section 4.1 – Area, Distance, and Sigma Notation

Example 1: Estimate the area under the graph of $f(x) = x^2 + 2x$ from 4 to 16 using the areas of 3 rectangles of equal width, with heights of the rectangles determined by the height of the curve at both **left endpoints** and **right endpoints**.

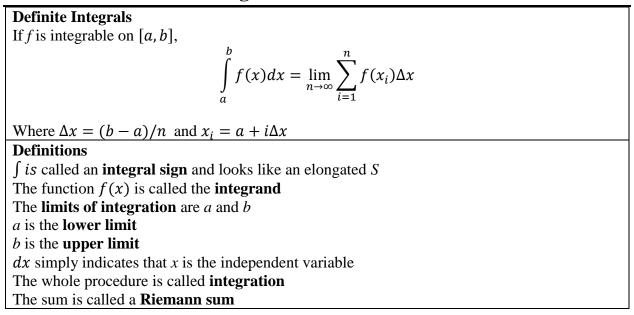
Example 2: Using the function $f(x) = 63 + 2x - x^2$ from -7 to 9, overestimate the area using an **Upper Sum** and underestimate the area using a **Lower Sum**. Use 4 rectangles.

Example 3: The following table gives the velocity (in m/s) of an object at time *t* (in seconds).

t	2	4	6	8	10
v(t)	40	38	32	25	10

Estimate the distance traveled using a left and a right hand sum.

Example 4: Find the sum of all numbers from 1 to 100


Sigma Notation	
	$\sum_{i=1}^{5}$
	$\sum_{i=1}^{i} i = 1 + 2 + 3 + 4 + 5$
	$\overline{i=1}$
Summation Rules	
	$\sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
	$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$
	$\overline{i=1}$, $\overline{i=1}$, $\overline{i=1}$
	$\sum_{i=1}^{n} (ca_i) = c \sum_{i=1}^{n} a_i$
	$\sum (ca_i) = c \sum a_i$
	n
	$\sum_{i=1}^{n}$
	$\sum_{i=1}^{n} 1 = n$
	$n^{i=1}$
	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
	$\sum_{l=\frac{1}{2}}$
	$\overline{i=1}$ $$
	$\sum_{n=2}^{\infty} \frac{n(n+1)(2n+1)}{2n+1}$
	$\sum i^{-} = \frac{6}{6}$
	i=1 n
	$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$ $\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$
	$\sum \iota = \frac{4}{4}$
	<i>i</i> =1

Example 5: Find the following sums

$$\sum_{i=1}^{100} 2i =$$

$$\sum_{i=31}^{100} 2i =$$

Section 4.2 – Definite Integral

Example 1: Write the following limit of a Riemann sum as an integral with limits 3 and 10

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{3 + \frac{7i}{n}} \cdot \frac{7}{n}$$

Example 2: Write the following limit of a Riemann sum as an integral

$$\lim_{n \to \infty} \sum_{i=1}^n \frac{1}{8 + \frac{5i}{n}} \cdot \frac{5}{n}$$

Example 3: Write the following limit of a Riemann sum as an integral

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{24 \cdot \frac{3i}{n} + 9}{n}$$

What is an integral and when are we allowed to do it?

Integration can be thought of as derivatives in reverse. Where a derivative is the slope of the tangent line at any point on a graph, a definite integral is the area under the curve between two points. So a definite integral exists on a closed interval [a, b] if f is continuous on that interval, or if f has a finite number of jump discontinuities.

Example 4: Evaluate the following integral by interpreting it in terms of area

$$\int_{-5}^{5} \sqrt{25 - x^2} dx$$

Example 5: Evaluate the following integral by interpreting it in terms of area

$$\int_{0}^{10} |x-3| dx$$

Example 6: Evaluate the following integral by interpreting it in terms of area

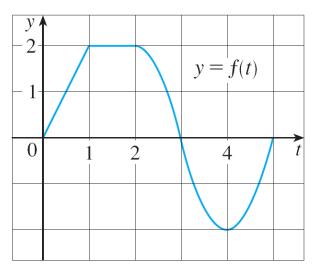
$$\int_{2}^{8} g(x)dx \quad g(x) = \begin{cases} 2 & \text{if } 2 \le x \le 6\\ 5 & \text{if } 6 < x \le 8 \end{cases}$$

Integral Properties
1. $\int_{a}^{b} c dx = c(b-a)$ where c is any constant
2. $\int_{a}^{b} x dx = \frac{1}{2}(b^2 - a^2)$
3. $\int_{a}^{b} x^{2} dx = \frac{1}{3} (b^{3} - a^{3})$
4. $\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$
5. $\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$ where <i>c</i> is any constant
6. $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
7. $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$
8. If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$
9. If $f(x) \ge g(x)$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$
10. If $m \le f(x) \le M$ for $a \le x \le b$, then $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$

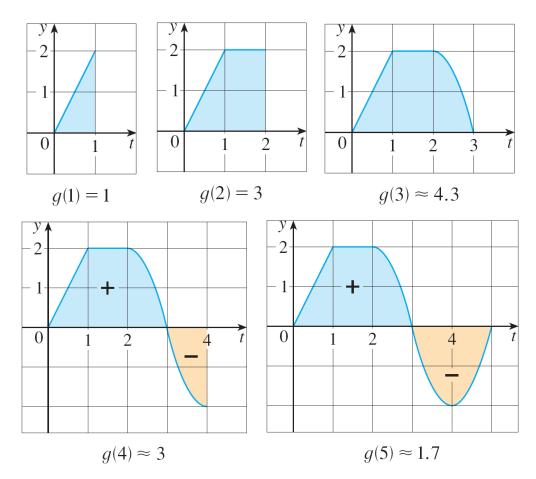
Example 7: Evaluate the following integral

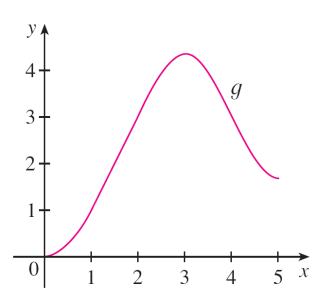
$$\int_{-1}^{5} 4x + 3 dx$$

Example 8: Evaluate the following integral


$$\int_0^3 (x+2)^2 dx$$

Example 9: Evaluate the following integrals given


$$\int_{5}^{13} f(x) \, dx = 12 \qquad \int_{5}^{8} f(x) \, dx = 5 \qquad \int_{10}^{13} f(x) \, dx = 4$$
$$\int_{8}^{10} f(x) \, dx =$$
$$\int_{10}^{5} f(x) \, dx =$$


Section 4.3 – Fundamental Theorem

Example 1: Given that *f* is the function below and $g(x) = \int_0^x f(t)dt$, find g(0), g(1), g(2), g(3), g(4), and g(5) and then sketch g(x).

Solution: First, $g(0) = \int_0^0 f(t) dt = 0$. Next we obtain the following

Using the values found on the previous page, we get sketch on the left for the graph of g(x)

The Fundamental Theorem of Calculus, Part 1

If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{a}^{\infty} f(t)dt \quad a \le x \le b$$

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x)

Written another way we have

$$\frac{d}{dx}\int_{a}^{x}f(t)dt = f(x)$$

Example 2: Find g'(x) given that

$$g(x) = \int_3^x \frac{1}{1+t^3} dt$$

Example 3: Find g'(x) given that

$$g(x) = \int_{12}^x \sin t \, dt$$

Example 4: Find g'(x) given that

$$g(x) = \int_{-17}^{x} t^2 dt$$

Example 5: Find g'(x) given that

$$g(x) = \int_{x}^{42} \frac{1}{1+t^3} dt$$

The Fundamental Theorem of Calculus, Part 2

If f is continuous on [a, b], then

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

where F is any antiderivative of f

Example 6: Evaluate the integral

$$\int_{-2}^{1} 3x^2 dx$$

Example 7: Evaluate the integral

```
\int_{\pi/6}^{\pi/3} \cos x \, dx
```

Example 8: Find the derivative of the integral below by first using the FTCp2.

$$\frac{d}{dx}\int_{\pi/2}^{x^4}\cos t\,dt$$

Example 9: Find the derivative of the integral below

$$\frac{d}{dx}\int_{3}^{\sin x}e^{t}dt$$

Example 10: Find the derivative of the integral below

$$\frac{d}{dx}\int_{x^2}^{x^5}\tan t\,dt$$

Example 11: Evaluate the integral

$$\int_{0}^{20} |x-14| dx$$

Example 12: Use a definite integral to find the area below the curve $y = 12 - 3x^2$ and above the *x*-axis.

Example 13: Find h'(x) given

$$h(x) = \int_{53}^{1+\sin x} \cos t^2 + t \, dt$$

Example 14: Find g'(x) given

$$g(x) = \int_{9x}^{3x} \frac{1}{u^2 + 6} du$$

Section 4.4 – Indefinite Integral

Indefinite Integrals	
$\int f(x)dx = F(x) \qquad n$	neans $F'(x) = f(x)$
For example,	
	$ause \frac{d}{dx}\left(\frac{x^3}{3}+C\right) = x^2$
The difference between definite and indefinite i	ntegrals is that a definite integral (the ones
with specific limits <i>a</i> and <i>b</i>) is a number where	
1	0
	Indefinite Integrals
$\int cf(x)dx = c\int f(x)dx$	$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$
$\int k dx = kx + C$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C (n \neq -1)$
$\int \cos x dx = \sin x + C$	$\int \sin x dx = -\cos x + C$
$\int \sec^2 x dx = \tan x + C$	$\int \csc^2 x dx = -\cot x + C$
$\int \sec x \tan x dx = \sec x + C$	$\int \csc x \cot x dx = -\csc x + C$

Example 1: Find the (most) general indefinite integral

$$\int (x^{41} + x^{52} + 7x^5) dx$$

Example 2: Find the general indefinite integral

$$\int \left(\sqrt[3]{x^2} + \frac{1}{x^5} - \sin x\right) dx$$

Example 3: Find the general indefinite integral

$$\int \frac{\sin\theta}{\cos^2\theta} d\theta$$

Example 4: Find the general indefinite integral

$$\int t^4(t-1)dt$$

Example 5: Find the general indefinite integral

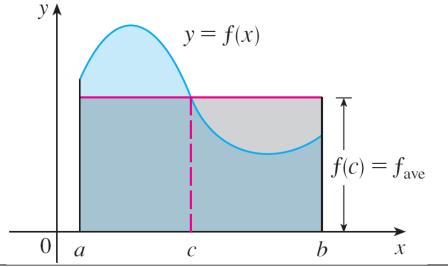
$$\int \frac{3x^5 - 2}{17\sqrt{x}} dx$$

Section 5.5 – Total Area

Average Value: the average value of a function f on the interval [a, b] is

$$f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

The Mean Value Theorem for Integrals


If f is continuous on [a, b], then there exists a number c in [a, b] such that

$$f(c) = f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

or rewritten,

$$\int_{a}^{b} f(x)dx = f(c)(b-a)$$

Graphically, this means that there is a rectangle with the exact same area and width as the definite integral from a to b, and the height of this rectangle is a function value somewhere in the interval [a, b]

Example 6: Find the average value of $f(x) = 3x^2 - 2x$ on the interval [0, 6].

Example 7: MSU *vs* UofM football game. The game clock reads 5:04 when Michigan snaps the ball from their own 27 yard line. A Michigan State cornerback runs down the sideline chasing the Michigan receiver. 6 seconds into the play he makes an interception and starts running back the other way, still straight down the sideline. He is forced out of bounds and the clock reads 4:55. The MSU cornerback's velocity during the play is v(t) = t(6 - t) measured in *yd/sec*.

a) Where was the corner forced out of bounds?

b) How far did he travel over the course of the play?

c) What was his average velocity?

d) What was his average speed?

Section 4.5 – Substitution

Example 1: Find the derivative of $F(x) = \sin(x^8)$

Now evaluate $F(x) = \int \cos(x^8) \cdot 8x^7 dx$ where F(0) = 0

Substitution Rule (often called *u-substitution*)

If u = g(x) is a differentiable function whose range is an interval *I* and *f* is continuous on *I*, then

$$\int f(g(x))g'(x)dx = \int f(u)du$$

Example 2: Use an appropriate substitution to evaluate

$$\int \sec^2(x^4+2)\,x^3dx$$

Example 3: Use a *u* substitution to evaluate

$$\int x \cos x^2 \sin x^2 \, dx$$

Example 4: Use a *u* substitution to evaluate

$$\int \frac{x^2 dx}{(3-x^3)^2}$$

Example 5: Use a *u* substitution to evaluate

$$\int \frac{\csc\sqrt{x}\cot\sqrt{x}}{\sqrt{x}} dx$$

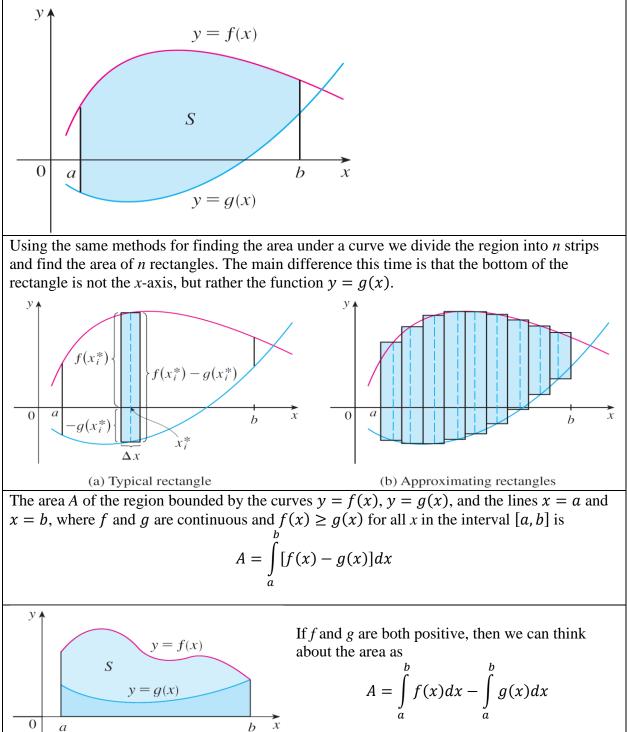
Substitution Rule for **Definite** Integrals If g' is continuous on [a, b] and f is continuous on the range of u = g(x), then $\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$

Example 6: Evaluate the following definite integral

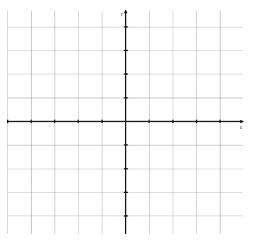
$$\int_{\pi/6}^{2\pi/3} \sin x \cos x \, dx$$

Integrals of Symmetric Functions

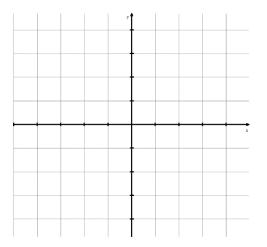
Suppose f is continuous on [-a, a], 1. If f is even, then $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$ 2. If f is odd, then $\int_{-a}^{a} f(x)dx = 0$

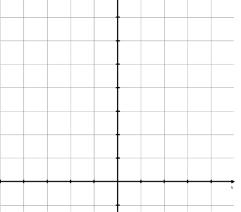

Example 7: Evaluate the following integral without doing any difficult math.

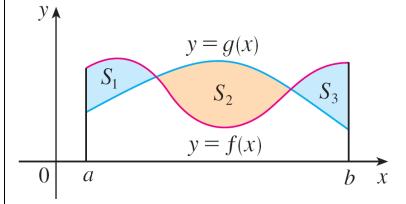
$$\int_{-1098771}^{1098771} \sin x + x^3 - 2x \, dx$$


Section 5.1 – Area Between Curves

Area Between Curves

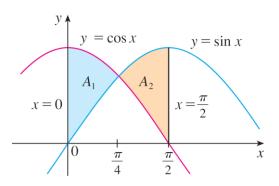

Consider the region *S* that lies between two curves y = f(x) and y = g(x) and between the vertical lines x = a and x = b, where *f* and *g* are continuous functions and $f(x) \ge g(x)$ for all *x* in [a, b].


Example 1: Sketch the area between the curves $f(x) = \frac{1}{6}x^2 + 3$ and g(x) = x on the interval [-6, 6]. Calculate this area using an integral.


Example 2: Sketch the region bounded by the curves $f(x) = 6 - x^2$ and y + x = 0. Calculate this area using an integral.

Example 3: Sketch the region bounded by the curves $f(x) = 5x^2$ and $g(x) = 2x^2 + 75$. Calculate this area using an integral.

What happens if we are asked to find the area between two curves, but f(x) is not always larger than g(x)?

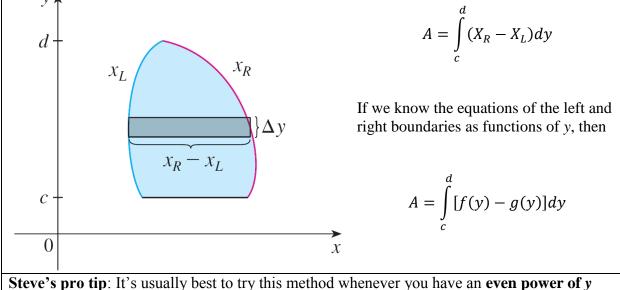


If that is the case, we split up the area into regions where either $f(x) \ge g(x)$ or $g(x) \ge f(x)$ for the entire interval. Then find the area of each region and add them all up. The area A between two curves y = f(x) and y = g(x), and the lines x = a and x = b is

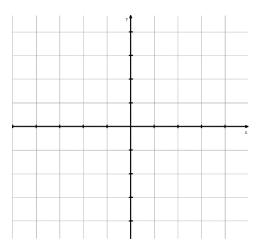
The area A between two curves y = f(x) and y = g(x), and the lines x = a and x = b is $A = \int_{a}^{b} |f(x) - g(x)| dx$

This means that we will most likely have to split up the integral every time |f(x) - g(x)| = 0For example, let's say $f(x) \ge g(x)$ for $a \le x \le c$ and $g(x) \ge f(x)$ for $c \le x \le b$. Then

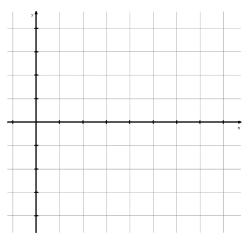
$$\int_{a}^{b} |f(x) - g(x)| dx = \int_{a}^{c} (f(x) - g(x)) dx + \int_{c}^{b} (g(x) - f(x)) dx$$

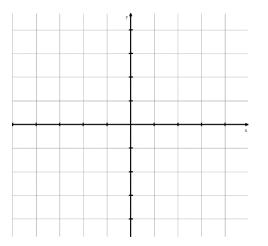


Example 4: Find the area bounded by the curves $y = \sin x$, $y = \cos x$, x = 0, and $x = \pi/2$


Example 5: Find the area enclosed by the line y = x - 1 and the parabola $y^2 - 2x = 6$.

		у			
					x
			•		


Well, that sucked. Is there a better way? Why yes, of course there is! In the last example the bottom boundary of our region changed half through the problem. But if we instead look at the left and right boundaries, they don't change. So instead of integrating with respect to x, we should integrate with respect to y.


Example 6: Find the area enclosed by the line y = x - 1 and the parabola $y^2 - 2x = 6$, but this time integrate using y as your independent variable.

Example 7: Sketch the region between the curves $f(y) = 2y^2$ and $g(y) = y^2 + 4$. Calculate this area using an integral.

Example 8: Sketch the region between the curves $x + y^2 = 12$ and y + x = 0 and decide if you should calculate the area between them using an integral with respect to *x* or *y*

