Extra Problems for Homework 7

Math 461, Fall 2006

1. Let M be a manifold of dimension d, and let $U \subset M$ be a non-empty open subset. Prove that U (with the subspace topology) is also a manifold of dimension d.

2. Let *M* and *N* be manifolds of dimension *c* and *d*, respectively. Prove that $M \times N$ (with the product topology) is a manifold of dimension (c + d).

3. Let $X = \mathbb{R}^2$, with the usual topology induced by the Pythagorean metric. Find an equivalence relation \sim , such that the identification space X/\sim is

- a) not locally Euclidean (some point of X/\sim has no neighborhood homeomorphic to an open set in \mathbb{R} or \mathbb{R}^2),
- b) not Hausdorff.