Extra Problems for Homework 3

Math 461, Fall 2006

The following problems are part of the assigned homework for graduate students, and are extra credit for undergrads.

- **1.** Let \mathcal{B} be a basis for a topology τ on X.
- (a) Prove that τ is the intersection of all topologies that contain \mathcal{B} .
- (b) Prove that the same conclusion holds when \mathcal{B} is a subbasis.

2. For the integers \mathbb{Z} , let \mathcal{B} be the set of all arithmetic sequences that extend infinitely far in both directions. For example, one element of \mathcal{B} is

$$B = \{\dots, -3, 1, 5, 9, \dots\}.$$

(a) Prove that \mathcal{B} is a basis for a topology τ on \mathbb{Z} .

(b) Describe the simplest closed sets (apart from \mathbb{Z} and \emptyset) that you can think of in this topology.

(c) Use the topology τ to prove that there are infinitely many prime numbers.