Midterm Exam 3
Math 132-06, Fall 2005

You have 50 minutes. No notes, no books, no calculators. You must show all work to
receive credit! Good luck!
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1. [22 points] A particle moves along the z-axis. At any time t > 0, its acceleration is
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(b) [8 points] When ¢ = 0, the particle is standing still. What is its velocity at time ¢7
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(b) [8 points] When ¢t = 0, the particle is at the origin. What is its position at time ¢7
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(c) [6 points] In the time interval [0, 4], what is the maximum distance from the origin that the
particle will reach? (You can leave the answer in terms of trig functions, roots, etc.)
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2. [18 points] Compute the following limits, using any method discussed in class.
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3. [20 points] The following is a graph of f'(z). Note that this is a graph of the derivative, not
of f(z).
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(a) [6 points] Where is f(z) increasing? Where is it decreasing? Where are its critical points?
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(a) [6 points] Where is f(z) concave up? Where is it concave down? Where are its inflection
points?
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(c) [8 points] Suppose f(0) = —1. Sketch a graph of f(z). Label all ciritical points and points
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4. [20 points] A farmer has a plot of land next to a straight riverbank. He has three sections of
fence, each 10 meters long, and wants to build a pen next to the river using these pieces. The
pen will come out in the shape of a trapezoid:
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(a) [6 points] Given angle 6 in the interval [0, 7], what is the area of the pen?
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(b) [8 points] What angle 6 will maximize the area of the pen? What will that area be?
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(c) [6 points] Explain, using the theorems discussed in class, why you know this is the maximum
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5. [20 points]

(a) [8 points] State the Mean Value Theorem. |
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(b) [12 points] Elena and Megan start a race at the same time and finish the race at the same
time. Prove that, at some point during the race, they had the exact same speed.
Hint: consider the function g(t) that describes the gap between Elena and Megan at time t.
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