Chapter 4 Review Problems
Math 132-06, Fall 2005

1. A particle moves back and forth along the z-axis. At time ¢t = 0, it is at the origin and
moving forward with velocity 3 units per second. At any time ¢, its acceleration is 3 cos(3t).

Figure out its position at time ¢.
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2. Compute the following limits. ( You can use L’Hépital’s rule whenever it applies.)
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3. Let f be a function which is continuous on the interval [0,3]. The following chart gives
values of f, f’, and f” on this interval.
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(a) Where is f increasing? Where is f decreasing?
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(b) Where is f concave up? Where is f concave down?
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(c) Sketch a graph of what f might look like.




4. You want to construct an isosceles triangle whose vertices lie on the unit circle 2 +y* =1
One vertex of the triangle is at the point (1,0), while the other two vertices are at symmetric

points above and below the z-axis. What triangle of this sort will have the largest area? What

are its side lengths?
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5. A straight shoreline runs north-south. A lighthouse, positioned 1 km offshore, shines a beam
of light in two opposite directions. The beam of light rotates, moving along the shore from
south to north, and makes a full turn every 27 minutes.

(a) Suppose that at time ¢ = 0, the light shines directly at the closest point on the shore. Write
down a formula for f(¢), the function that describes where on the shore the light beam hits at
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(b) What is the average rate of change of f(t) between ¢ = 0 and ¢t = 227 What is the
instantaneous velocity of the illuminated spot at time ¢ on this interval?
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(c) Will the instantaneous velocity ever equal the average velocity? Explain how this conclusion
relates to the Mean Value Theorem. {
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