MTH 411: Final exam Fall 2016

Duration: 120 min
The problems are independent

Exercise 1:

What is the degree of $\mathbb{Q}(\sqrt{2}, i \sqrt{2}, \sqrt[5]{7})$ over \mathbb{Q} ?

We know that $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$, also $[\mathbb{Q}(\sqrt{2}, i \sqrt{2}): \mathbb{Q}(\sqrt{2})] \leq 2$ because $i \sqrt{2}$ is a root of $X^{2}+2$. This degree is actually 2 as $\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ and $\mathbb{Q}(\sqrt{2}, i \sqrt{2}) \nsubseteq \mathbb{R}$. So $[\mathbb{Q}(\sqrt{2}, i \sqrt{2}): \mathbb{Q}]=4$.

On the other hand, $\mathbb{Q}(\sqrt{2}, i \sqrt{2}, \sqrt[5]{7})$ contains $\mathbb{Q}(\sqrt[5]{7})$ which has degree 5 over \mathbb{Q} by Eisenstein criterion for $X^{5}-7$. So the degree $[\mathbb{Q}(\sqrt{2}, i \sqrt{2}, \sqrt[5]{7}): \mathbb{Q}]$ is divisible by 4 and 5 so it is divisible by 20 . But $[\mathbb{Q}(\sqrt{2}, i \sqrt{2}, \sqrt[5]{7}): \mathbb{Q}((\sqrt{2}, i \sqrt{2})] \leq 5$ so this degree is exactly 20 .

Exercise 2:

Let G be a group of order 325 . Show that G is abelian.
By the third Sylow theorem, let us compute the number of 5 and 13-Sylow of G.
$n_{5} \equiv 1(\bmod 5)$ and $n_{5} \mid 13$ so $n_{5}=1$.
$n_{1} 3 \equiv 1(\bmod 13)$ and $n_{13} \mid 25$, so $n_{13}=1$.
Then, both the 5 -Sylow S_{5} and the 13-Sylow $S_{1} 3$ of G are unique, thus normal by the second Sylow theorem. Their intersection is the trivial subgroup, so $G \simeq S_{5} \times S_{1} 3$. But $S_{1} 3$, of cardinal 13 , is isomorphic to $\mathbb{Z}_{1} 3$, and S_{5}, of cardinal 25 , is isomorphic to \mathbb{Z}_{25} or to $\mathbb{Z}_{5} \times \mathbb{Z}_{5}$.

Thus G is abelian.

Exercise 3:

Compute $a^{2}(\bmod 13)$ for $a \in \mathbb{Z}_{13}$, then show that 2 is irreducible in $\mathbb{Z}[\sqrt{13}]$.

For $a=0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, a^{2}=0,1,4,-4,3,-1,-3$ modulo 13 . So neither 2 nor -2 is a square $\bmod 13$.

If $2=x y$ with x and y non units in $\mathbb{Z}[\sqrt{13}]$, as $N(2)=4$, we must have that $N(x)= \pm 2$. Then writing $x=r+s \sqrt{3}$, we have $N(x)=r^{2}-13 s^{2}$, so $r^{2}= \pm 2(\bmod 13)$ which is impossible.

So 2 is irreducible in $\mathbb{Z}[\sqrt{13}]$.

Exercise 4:

For p a prime number, the set $G=\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{p}$ is a group for the operation:

$$
(a, b) \cdot(c, d)=(a c, a d+b)
$$

Show that $N=\left\{(1, x) / x \in \mathbb{Z}_{p}\right\}$ is a p-Sylow subgroup of G.
G has order $p(p-1)$, so any subgroup of G of order p is a p-Sylow subgroup of G. N clearly has cardinal p, so we need only to prove that it is a subgroup. We have:

- $(1,0) \in N$, so N is non-empty
- If $(1, x)$ and $(1, y) \in N$, then $(1, x)(1, y)=(1, x+y) \in N$.
- The inverse $(1,-x)(1, x)=(1,0)$, the inverse $(1,-x)$ of $(1, x)$ is in N.

So N is a p-Sylow subgroup of G.

Problem 1:

For this exercise, you can use the fact that $\mathbb{Z}[\sqrt{2}]$ is a Euclidian domain.
We want to compute the degree of the splitting field of $P(X)=\left(X^{2}-1\right)^{2}-8$ over \mathbb{Q}.

1) Find the roots of P.
$P(X)=0 \Leftrightarrow X^{2}-1= \pm 2 \sqrt{2} \Leftrightarrow X^{2}=1 \pm 2 \sqrt{2} \Leftrightarrow X= \pm \sqrt{1 \pm 2 \sqrt{2}}$
2) Show that $1+2 \sqrt{2}$ is irreducible in $\mathbb{Z}[\sqrt{2}]$
$N(1+2 \sqrt{2})=1-2 \cdot 2^{2}=-7$ is plus or minus a prime, so $1+2 \sqrt{2}$ is irreducible in $\mathbb{Z}[\sqrt{2}]$.
3) Deduce from this that $x^{2}=1+2 \sqrt{2}$ has no solution in $\mathbb{Q}(\sqrt{2})$
(Hint: Use the decomposition into irreducibles in $\mathbb{Z}[\sqrt{2}]$)
Let x in $\mathbb{Q}(\sqrt{2})$ such that $x^{2}=1+2 \sqrt{2}$. We can always write $x=\frac{y}{z}$ where $y, z \in \mathbb{Z}[\sqrt{2}]$. Then we get

$$
y^{2}=z^{2}(1+2 \sqrt{2})
$$

If we decompose both side of the equation into a product of irreducible in $\mathbb{Z}[\sqrt{2}]$, there will be an even power of the irreducible $1+2 \sqrt{2}$ on the left and an odd power on the right. As $\mathbb{Z}[\sqrt{2}]$ is a unique factorization domain, this is a contradiction.
4) Conclude from question 3) that $[\mathbb{Q}(\sqrt{1+2 \sqrt{2}}): \mathbb{Q}]=4$.
$\sqrt{1+2 \sqrt{2}}$ is a root of the polynomial $P(X)=X^{2}-(1+2 \sqrt{2}) \in \mathbb{Q}(\sqrt{2})[X]$. So the degree is less than 2 .
As $\sqrt{1+2 \sqrt{2}} \notin \mathbb{Q}(\sqrt{2})$ by question 3$)$, the degree is exactly 2 .
5) Show that $[\mathbb{Q}(\sqrt{1+2 \sqrt{2}}, \sqrt{1-2 \sqrt{2}}): \mathbb{Q}]=8$.
$\sqrt{1-2 \sqrt{2}}$ is a root of the polynomial $Q(X)=X^{2}-(1-2 \sqrt{2})$ which has coefficients in $\mathbb{Q}(\sqrt{2})$, thus also in $\mathbb{Q}(\sqrt{1+2 \sqrt{2}})$.
So the degree $[\mathbb{Q}(\sqrt{1+2 \sqrt{2}}, \sqrt{1-2 \sqrt{2}}): \mathbb{Q}(\sqrt{1+2 \sqrt{2}})]$ is less than 2 .
But $\mathbb{Q}(\sqrt{1+2 \sqrt{2}}) \subset \mathbb{R}$ and $\sqrt{1-2 \sqrt{2}} \notin \mathbb{R}$ as $1-2 \sqrt{2}<0$.
Thus the degree $[\mathbb{Q}(\sqrt{1+2 \sqrt{2}}, \sqrt{1-2 \sqrt{2}}): \mathbb{Q}(\sqrt{1+2 \sqrt{2}})]$ is exactly 2 , and by 4$)$

$$
[\mathbb{Q}(\sqrt{1+2 \sqrt{2}}, \sqrt{1-2 \sqrt{2}}): \mathbb{Q}]=8
$$

Problem 2:

We are interested in the equation

$$
\left(E_{D}\right): \quad x^{2}-3 y^{2}=D
$$

where x and y are integers and $D \in \mathbb{Z}$ non-zero is a parameter.

1) Show the equation $\left(E_{D}\right)$ is equivalent to $N(z)=D$ where $z=x+y \sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ and N is the norm.
Show also that $x=2, y=1$ is a solution of $\left(E_{1}\right)$ and find a solution of $\left(E_{-1}\right)$.

The subject contained a mistake: there is no solution to $\left(E_{-1}\right)$.
If $z=x+y \sqrt{3}$ then $N(z)=x^{2}-3 y^{2}$, so $\left(E_{D}\right)$ is equivalent to $N(z)=D$.

We have that $N(2+\sqrt{3})=2^{2}-3 \cdot 1^{2}=1$, so $x=2, y=1$ is a solution of $\left(E_{1}\right)$.
If $x \in \mathbb{Z}$, then $x^{2}=0$, or $1(\bmod 3)$, so there can not be any solution to $\left(E_{-1}\right)$.
2) Considering powers $(2+\sqrt{3})^{n}$, show for any $D \neq 0$, there is either no solution or a infinite number of solutions.

Let z_{0} be a solution of $\left(E_{D}\right)$. Then $N\left((2+\sqrt{3})^{n} z_{0}\right)=N(2+\sqrt{3})^{n} N\left(z_{0}\right)=1^{n} \cdot D=D$. So if there is a solution to $\left(E_{D}\right)$, there is an infinite number of them.
3) Let p be a prime. Show that p is irreducible in $\mathbb{Z}[\sqrt{3}]$ if and only if $\left(E_{p}\right)$ has no solution.

In $\mathbb{Z}[\sqrt{3}]$, we have $N(p)=p^{2}$. If p is reducible and x is a non-unit non-associate divisor of p, we must have $N(x)=p$, which means that $\left(E_{p}\right)$ has a solution.
On the other hand, if $\left(E_{p}\right)$ has a solution $z=x+y \sqrt{3}$ then p is reducible as

$$
p=N(z)=(x+y \sqrt{3})(x-y \sqrt{3})
$$

4) We admit that $\mathbb{Z}[\sqrt{3}]$ is a principal ideal domain. Let p be a prime greater or equal to 5. Show that $\left(E_{p}\right)$ has a solution if and only if $t^{2}=3(\bmod p)$ has a solution.
(Hint: If there is a solution to $t^{2}=3(\bmod p)$, find x and y such that

$$
(x+y \sqrt{3})(x-y \sqrt{3})=n p
$$

where $|n|<p$, then show that the ideal (p) is not prime.)
If $x^{2}-3 y^{2}=p$, then p divides neither x nor y, and $x^{2}-3 y^{2}=0(\bmod p)$, and thus $(x / y)^{2}=3(\bmod p)$.

On the other hand, if $t^{2}=3(\bmod p)$, then $N(t+\sqrt{3})=0(\bmod p)$. Choosing t such that $|t| \leq \frac{p-1}{2}$, we have $(t+\sqrt{3})(t-\sqrt{3})=n p$ with $|n| \leq p$. This implies that the ideal (p) is not prime, and thus that p is not irreducible, as $\mathbb{Z}[\sqrt{3}]$ is an principal ideal domain.

