
MTH 411: Final exam

Fall 2016

Duration: 120 min

The problems are independent

Exercise 1:

What is the degree of Q(
√
2, i
√
2,

5
√
7) over Q?

We know that [Q(
√
2) : Q] = 2, also [Q(

√
2, i
√
2) : Q(

√
2)] ≤ 2 because i

√
2 is a

root of X2 + 2. This degree is actually 2 as Q(
√
2) ⊂ R and Q(

√
2, i
√
2) * R. So

[Q(
√
2, i
√
2) : Q] = 4.

On the other hand, Q(
√
2, i
√
2,

5
√
7) contains Q(

5
√
7) which has degree 5 over Q by

Eisenstein criterion for X5 − 7. So the degree [Q(
√
2, i
√
2,

5
√
7) : Q] is divisible by 4 and 5

so it is divisible by 20. But [Q(
√
2, i
√
2,

5
√
7) : Q((

√
2, i
√
2)] ≤ 5 so this degree is exactly 20.

Exercise 2:

Let G be a group of order 325. Show that G is abelian.

By the third Sylow theorem, let us compute the number of 5 and 13-Sylow of G.

n5 ≡ 1(mod 5) and n5|13 so n5 = 1.
n13 ≡ 1(mod 13) and n13|25, so n13 = 1.
Then, both the 5-Sylow S5 and the 13-Sylow S13 of G are unique, thus normal by the

second Sylow theorem. Their intersection is the trivial subgroup, so G ' S5 × S13. But

S13, of cardinal 13, is isomorphic to Z13, and S5, of cardinal 25, is isomorphic to Z25 or

to Z5 × Z5.

Thus G is abelian.

Exercise 3:

Compute a2 (mod 13) for a ∈ Z13, then show that 2 is irreducible in Z[
√
13].

For a = 0,±1,±2,±3,±4,±5,±6, a2 = 0, 1, 4,−4, 3,−1,−3 modulo 13. So neither 2
nor −2 is a square mod 13.

If 2 = xy with x and y non units in Z[
√
13], asN(2) = 4, we must have thatN(x) = ±2.

Then writing x = r + s
√
3, we have N(x) = r2 − 13s2, so r2 = ±2(mod 13) which is

impossible.

So 2 is irreducible in Z[
√
13].

Exercise 4:

For p a prime number, the set G = Z∗
p × Zp is a group for the operation:

(a, b) · (c, d) = (ac, ad+ b)



.

Show that N = {(1, x) /x ∈ Zp} is a p-Sylow subgroup of G.

G has order p(p− 1), so any subgroup of G of order p is a p-Sylow subgroup of G.

N clearly has cardinal p, so we need only to prove that it is a subgroup. We have:

- (1, 0) ∈ N , so N is non-empty

- If (1, x) and (1, y) ∈ N , then (1, x)(1, y) = (1, x+ y) ∈ N .

- The inverse (1,−x)(1, x) = (1, 0), the inverse (1,−x) of (1, x) is in N .

So N is a p-Sylow subgroup of G.

Problem 1:

For this exercise, you can use the fact that Z[
√
2] is a Euclidian domain.

We want to compute the degree of the splitting �eld of P (X) = (X2 − 1)2 − 8 over Q.

1) Find the roots of P .

P (X) = 0⇔ X2 − 1 = ±2
√
2⇔ X2 = 1± 2

√
2⇔ X = ±

√
1± 2

√
2

2) Show that 1 + 2
√
2 is irreducible in Z[

√
2]

N(1 + 2
√
2) = 1 − 2 · 22 = −7 is plus or minus a prime, so 1 + 2

√
2 is irreducible in

Z[
√
2].

3) Deduce from this that x2 = 1 + 2
√
2 has no solution in Q(

√
2)

(Hint: Use the decomposition into irreducibles in Z[
√
2])

Let x in Q(
√
2) such that x2 = 1 + 2

√
2. We can always write x =

y

z
where y, z ∈ Z[

√
2].

Then we get

y2 = z2(1 + 2
√
2)

If we decompose both side of the equation into a product of irreducible in Z[
√
2], there will

be an even power of the irreducible 1 + 2
√
2 on the left and an odd power on the right.

As Z[
√
2] is a unique factorization domain, this is a contradiction.

4) Conclude from question 3) that [Q(

√
1 + 2

√
2) : Q] = 4.√

1 + 2
√
2 is a root of the polynomial P (X) = X2 − (1 + 2

√
2) ∈ Q(

√
2)[X]. So the

degree is less than 2.

As

√
1 + 2

√
2 /∈ Q(

√
2) by question 3), the degree is exactly 2.

5) Show that [Q(

√
1 + 2

√
2,

√
1− 2

√
2) : Q] = 8.

2



√
1− 2

√
2 is a root of the polynomial Q(X) = X2 − (1 − 2

√
2) which has coe�cients

in Q(
√
2), thus also in Q(

√
1 + 2

√
2).

So the degree [Q(

√
1 + 2

√
2,

√
1− 2

√
2) : Q(

√
1 + 2

√
2)] is less than 2.

But Q(

√
1 + 2

√
2) ⊂ R and

√
1− 2

√
2 /∈ R as 1− 2

√
2 < 0.

Thus the degree [Q(

√
1 + 2

√
2,

√
1− 2

√
2) : Q(

√
1 + 2

√
2)] is exactly 2, and by 4)

[Q(

√
1 + 2

√
2,

√
1− 2

√
2) : Q] = 8

Problem 2:

We are interested in the equation

(ED) : x2 − 3y2 = D

where x and y are integers and D ∈ Z non-zero is a parameter.

1) Show the equation (ED) is equivalent to N(z) = D where z = x + y
√
3 ∈ Z[

√
3]

and N is the norm.

Show also that x = 2,y = 1 is a solution of (E1) and �nd a solution of (E−1).

The subject contained a mistake: there is no solution to (E−1).

If z = x+ y
√
3 then N(z) = x2 − 3y2, so (ED) is equivalent to N(z) = D.

We have that N(2 +
√
3) = 22 − 3 · 12 = 1, so x = 2, y = 1 is a solution of (E1).

If x ∈ Z, then x2 = 0, or 1(mod 3), so there can not be any solution to (E−1).

2) Considering powers (2 +
√
3)n, show for any D 6= 0, there is either no solution or a

in�nite number of solutions.

Let z0 be a solution of (ED). Then N((2 +
√
3)nz0) = N(2 +

√
3)nN(z0) = 1n ·D = D.

So if there is a solution to (ED), there is an in�nite number of them.

3) Let p be a prime. Show that p is irreducible in Z[
√
3] if and only if (Ep) has no

solution.

In Z[
√
3], we have N(p) = p2. If p is reducible and x is a non-unit non-associate divi-

sor of p, we must have N(x) = p, which means that (Ep) has a solution.

On the other hand, if (Ep) has a solution z = x+ y
√
3 then p is reducible as

p = N(z) = (x+ y
√
3)(x− y

√
3)

3



4) We admit that Z[
√
3] is a principal ideal domain. Let p be a prime greater or equal to

5. Show that (Ep) has a solution if and only if t2 = 3 (mod p) has a solution.

(Hint: If there is a solution to t2 = 3 (mod p), �nd x and y such that

(x+ y
√
3)(x− y

√
3) = np

where |n| < p, then show that the ideal (p) is not prime.)

If x2 − 3y2 = p, then p divides neither x nor y, and x2 − 3y2 = 0(mod p), and thus

(x/y)2 = 3(mod p).

On the other hand, if t2 = 3(mod p), then N(t +
√
3) = 0(mod p). Choosing t such

that |t| ≤ p− 1

2
, we have (t+

√
3)(t−

√
3) = np with |n| ≤ p. This implies that the ideal

(p) is not prime, and thus that p is not irreducible, as Z[
√
3] is an principal ideal domain.
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