MTH 310: Final Fall 2017

Duration: 120 min No calculator allowed

Exercise 1: Compute $2017^{2017} \mod 5$. (*Hint:* Show that $2017^4 = 1 \mod 5$ first.)

Exercise 2:

Show that $P(x) = x^4 + 6x^2 + 4$ is irreducible in $\mathbb{Q}[x]$.

Exercise 3:

In the ring $\mathbb{Q}[x]/(x^2+x+1)$, compute $[x]^k$ for k = 0, 1, 2, 3, 4, 5 and 6. Write your answer in the form [ax+b] with a and $b \in \mathbb{Q}$.

Exercise 4:

a) Show that $F = \mathbb{Z}_5[x]/(x^3 + 3x + 2)$ is a field. b) How many elements are there in F?

Exercise 5:

Let

$$R = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}) \mid c = 0 \mod 3 \}.$$

Show that R is a subring of $M_2(\mathbb{Z})$.

Exercise 6:

Let $I = \{P(x) \in \mathbb{R}[x] | P(0) = P'(0) = 0\}$. a) Show that I is an ideal of $\mathbb{R}[x]$. b) Is I a prime ideal?

Exercise 7:

Let $I = \{P(x) \in \mathbb{R}[x] \mid P(0) = P(2) = 0\}.$ a) Show that I is an ideal of $\mathbb{R}[x].$ b) Show that $\mathbb{R}[x]/I \simeq \mathbb{R} \times \mathbb{R}.$

Problem:

1)Prove that $P(x) = x^2 + 1$ and $Q(x) = x^2 + 2x + 2$ are irreducible polynomials in $\mathbb{Z}_3[x]$.

2) Let $F = \mathbb{Z}_3[x]/(P(x))$. Prove that $[x-1] \in F$ is a root of Q(x).

3)Let φ be the map

$$\varphi : \mathbb{Z}_3[x] \to \mathbb{Z}_3[x]/(x^2+1) \\ R(x) \to R([x-1])$$

Show that φ is a surjective morphism. (Hint: For surjectivity, compute $\varphi(ax + b)$ for a and $b \in \mathbb{R}$.)

4)Show that the kernel of φ contains the ideal (Q(x)).

5)Show that (Q(x)) is a maximal ideal of $\mathbb{Z}_3[x]$.

6) Deduce from 3),4) and 5) that the kernel of φ is exactly (Q(x)) and that

$$\mathbb{Z}_3[x]/(P(x)) \simeq \mathbb{Z}_3[x]/(Q(x)).$$