MTH 310: Final

Fall 2017
Duration: 120 min
No calculator allowed

Exercise 1:

Compute $2017^{2017} \bmod 5$. (Hint: Show that $2017^{4}=1 \bmod 5$ first.)

Exercise 2:

Show that $P(x)=x^{4}+6 x^{2}+4$ is irreducible in $\mathbb{Q}[x]$.

Exercise 3:

In the ring $\mathbb{Q}[x] /\left(x^{2}+x+1\right)$, compute $[x]^{k}$ for $k=0,1,2,3,4,5$ and 6 . Write your answer in the form $[a x+b]$ with a and $b \in \mathbb{Q}$.

Exercise 4:

a) Show that $F=\mathbb{Z}_{5}[x] /\left(x^{3}+3 x+2\right)$ is a field.
b) How many elements are there in F ?

Exercise 5:

Let

$$
R=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{Z}) \right\rvert\, c=0 \quad \bmod 3\right\} .
$$

Show that R is a subring of $M_{2}(\mathbb{Z})$.

Exercise 6:

Let $I=\left\{P(x) \in \mathbb{R}[x] \mid P(0)=P^{\prime}(0)=0\right\}$.
a) Show that I is an ideal of $\mathbb{R}[x]$.
b) Is I a prime ideal?

Exercise 7:

Let $I=\{P(x) \in \mathbb{R}[x] \mid P(0)=P(2)=0\}$.
a) Show that I is an ideal of $\mathbb{R}[x]$.
b) Show that $\mathbb{R}[x] / I \simeq \mathbb{R} \times \mathbb{R}$.

Problem:

1)Prove that $P(x)=x^{2}+1$ and $Q(x)=x^{2}+2 x+2$ are irreducible polynomials in $\mathbb{Z}_{3}[x]$.
2)Let $F=\mathbb{Z}_{3}[x] /(P(x))$. Prove that $[x-1] \in F$ is a root of $Q(x)$.
3)Let φ be the map

$$
\begin{aligned}
\varphi: \mathbb{Z}_{3}[x] & \rightarrow \mathbb{Z}_{3}[x] /\left(x^{2}+1\right) \\
R(x) & \rightarrow R([x-1])
\end{aligned}
$$

Show that φ is a surjective morphism. (Hint: For surjectivity, compute $\varphi(a x+b)$ for a and $b \in \mathbb{R}$.)
4)Show that the kernel of φ contains the ideal $(Q(x))$.
5)Show that $(Q(x))$ is a maximal ideal of $\mathbb{Z}_{3}[x]$.
6)Deduce from 3),4) and 5) that the kernel of φ is exactly $(Q(x))$ and that

$$
\mathbb{Z}_{3}[x] /(P(x)) \simeq \mathbb{Z}_{3}[x] /(Q(x)) .
$$

