MTH 411: Midterm exam 2 correction Fall 2016

Exercise 1:

1) Show that the intersection of the subgroups $\langle 3\rangle$ and $\langle 15\rangle$ of U_{28} is $\{1\}$.

The successive powers of 3 modulo 28 are: $1,3,9,27=-1 \bmod 28,-3=25 \bmod 28$ and $-9=19 \bmod 28$, and we have $3^{6}=1 \bmod 28$.
On the other hand, $15^{2}=225=1 \bmod 28$. So $\langle 3\rangle=\{1,3,9,27,25,19\}$ and $\langle 15\rangle=\{1,15\}$ have trivial intersection.
2) Deduce from this that $U_{28} \simeq \mathbb{Z}_{6} \times \mathbb{Z}_{2}$.

The group U_{28} as a set is $\{1,3,5,9,11,13,15,17,19,23,25,27\}$, so it has order 12 . On the other $\langle 3\rangle \simeq \mathbb{Z}_{6}$ as 3 has order 6 and $\langle 15\rangle \simeq \mathbb{Z}_{2}$. These are normal subgroups $\left(U_{28}\right.$ is abelian) with trivial intersection, so the direct sum $\langle 3\rangle \oplus\langle 15\rangle$ is a subgroup of U_{28} isomorphic to $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$. Because it has order 12 , this subgroup is actually U_{28}.

Exercise 2:

Let G be a group of order 380 . We assume, by contradiction, that G is simple.

1) Compute the number of 5 and 19 Sylow subgroups of G.

By the third Sylow theorem, the number n_{5} of 5 -Sylow divides 76 and is $1 \bmod 5$. Divisors of 76 are: $1,2,4,19,38$ and 76 . So $n_{5}=1$ or 76 . As we assume G to be simple, $n_{5}=76$. Similarly the third Sylow theorem gives you that $n_{19}=1$ or 20 , thus $n_{19}=20$ if G is simple.
2) Show that G must contain at least 304 elements of order 5 and at least 360 elements of order 19. Conclude.

There are 76 5-Sylow subgroups, each of cardinal 5 , thus isomorphic to \mathbb{Z}_{5}, thus containing 4 elements of order 5 and the identity element. The intersection of two of them must have cardinal a strict divisor of 5 , thus it is only the identity elements. So we get $76 \times 4=304$ distincts elements of order 5 .
Similarly, there are 20 19-Sylow subgroups, isomorphic to \mathbb{Z}_{19}, and their pairwise intersections are trivial, so we get 18×20 distincts elements of order 19 .
As $304+360>380$, this is a contradiction, and a group of order 380 cannot be simple.

Exercise 3:

From Exam 1, you remember that the set $G=\left\{(a, b) \in \mathbb{R}^{*} \times \mathbb{R}\right\}$ is a group for the operation

$$
(a, b)(c, d)=(a c, a d+b)
$$

and that $N=\left\{(1, x)\right.$ for $\left.x \in \mathbb{R}^{*}\right\}$ is a normal subgroup of G.
1)Find the center Z of G.
(a, b) is in Z if for any $(c, d) \in G,(a c, a d+b)=(c a, c b+d)$. Taking $(c, d)=(1,2)$ you get $2 a+b=b+2$, thus $a=1$. Taking $(c, d)=(2,0)$ you get $b=2 b$, thus $b=0$. So the center is reduced to the identity element $(1,0)$.
2) Using the map φ :

$$
\begin{aligned}
G & \rightarrow \mathbb{R}^{*} \\
(a, b) & \mapsto a
\end{aligned}
$$

show that $G / N \simeq\left(\mathbb{R}^{*}, \times\right)$
The map φ is an homomorphism as

$$
\varphi((a, b)(c, d))=\varphi((a c, a d+b))=a c=\varphi((a, b)) \varphi((c, d))
$$

The kernel of this map is $\{(a, b) \in G \mid a=1\}=N$. The map is surjective as $\varphi((a, 0))=a$ for any $a \in \mathbb{R}^{*}$. The first isomorphism theorem says that $G / N \simeq \operatorname{Im} \varphi=\mathbb{R}^{*}$.

Exercise 4:

In $\mathbb{Z}[i]$, what is the gcd of $3-3 i$ and $1+5 i$?
Using Euclid's algorithm:

$$
1+5 i=\left(\frac{1+5 i}{3-3 i}\right)(3-3 i)=\left(\frac{(1+5 i)(3+3 i)}{18}\right)(3-3 i)=\left(\frac{-12+18 i}{18}\right)(3-3 i)
$$

Approximating $\frac{-12+18 i}{18}$ by the closest Gaussian integer $-1+i$, a Euclidian quotient is $-1+i$ and the remainder is then:

$$
(1+5 i)-(-1+i)(3-3 i)=1-i
$$

Now $1-i$ divides $3-3 i$, so their gcd is $1-i$.
So $\operatorname{gcd}(1+5 i, 3-3 i)=1-i$, up to a unit.

