MTH 411: Midterm exam 2 correction Fall 2016

Exercise 1:

1) Show that the intersection of the subgroups $\langle 3 \rangle$ and $\langle 15 \rangle$ of U_{28} is $\{1\}$.

The successive powers of 3 modulo 28 are: $1,3,9,27 = -1 \mod 28$, $-3 = 25 \mod 28$ and $-9 = 19 \mod 28$, and we have $3^6 = 1 \mod 28$. On the other hand, $15^2 = 225 = 1 \mod 28$. So $\langle 3 \rangle = \{1,3,9,27,25,19\}$ and $\langle 15 \rangle = \{1,15\}$ have trivial intersection.

2) Deduce from this that $U_{28} \simeq \mathbb{Z}_6 \times \mathbb{Z}_2$.

The group U_{28} as a set is $\{1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27\}$, so it has order 12. On the other $\langle 3 \rangle \simeq \mathbb{Z}_6$ as 3 has order 6 and $\langle 15 \rangle \simeq \mathbb{Z}_2$. These are normal subgroups (U_{28} is abelian) with trivial intersection, so the direct sum $\langle 3 \rangle \oplus \langle 15 \rangle$ is a subgroup of U_{28} isomorphic to $\mathbb{Z}_6 \times \mathbb{Z}_2$. Because it has order 12, this subgroup is actually U_{28} .

Exercise 2:

Let G be a group of order 380. We assume, by contradiction, that G is simple. 1) Compute the number of 5 and 19 Sylow subgroups of G.

By the third Sylow theorem, the number n_5 of 5-Sylow divides 76 and is 1 mod 5. Divisors of 76 are: 1,2,4,19,38 and 76. So $n_5 = 1$ or 76. As we assume G to be simple, $n_5 = 76$. Similarly the third Sylow theorem gives you that $n_{19} = 1$ or 20, thus $n_{19} = 20$ if G is simple.

2) Show that G must contain at least 304 elements of order 5 and at least 360 elements of order 19. Conclude.

There are 76 5-Sylow subgroups, each of cardinal 5, thus isomorphic to \mathbb{Z}_5 , thus containing 4 elements of order 5 and the identity element. The intersection of two of them must have cardinal a strict divisor of 5, thus it is only the identity elements. So we get $76 \times 4 = 304$ distincts elements of order 5.

Similarly, there are 20 19-Sylow subgroups, isomorphic to \mathbb{Z}_{19} , and their pairwise intersections are trivial, so we get 18×20 distincts elements of order 19.

As 304 + 360 > 380, this is a contradiction, and a group of order 380 cannot be simple.

Exercise 3:

From Exam 1, you remember that the set $G = \{(a, b) \in \mathbb{R}^* \times \mathbb{R}\}$ is a group for the operation

$$(a,b)(c,d) = (ac,ad+b)$$

and that $N = \{(1, x) \text{ for } x \in \mathbb{R}^*\}$ is a normal subgroup of G.

1) Find the center Z of G.

(a,b) is in Z if for any $(c,d) \in G$, (ac,ad+b) = (ca,cb+d). Taking (c,d) = (1,2) you get 2a+b=b+2, thus a=1. Taking (c,d) = (2,0) you get b=2b, thus b=0. So the center is reduced to the identity element (1,0).

2) Using the map φ :

$$G \to \mathbb{R}^*$$
$$(a,b) \mapsto a$$

show that $G/N \simeq (\mathbb{R}^*, \times)$

The map φ is an homomorphism as

$$\varphi((a,b)(c,d)) = \varphi((ac,ad+b)) = ac = \varphi((a,b))\varphi((c,d))$$

The kernel of this map is $\{(a, b) \in G \mid a = 1\} = N$. The map is surjective as $\varphi((a, 0)) = a$ for any $a \in \mathbb{R}^*$. The first isomorphism theorem says that $G/N \simeq \operatorname{Im} \varphi = \mathbb{R}^*$.

Exercise 4:

In $\mathbb{Z}[i]$, what is the gcd of 3 - 3i and 1 + 5i?

Using Euclid's algorithm:

$$1 + 5i = \left(\frac{1+5i}{3-3i}\right)(3-3i) = \left(\frac{(1+5i)(3+3i)}{18}\right)(3-3i) = \left(\frac{-12+18i}{18}\right)(3-3i)$$

Approximating $\frac{-12+18i}{18}$ by the closest Gaussian integer -1+i, a Euclidian quotient is -1+i and the remainder is then:

$$(1+5i) - (-1+i)(3-3i) = 1-i$$

Now 1 - i divides 3 - 3i, so their gcd is 1 - i. So gcd(1 + 5i, 3 - 3i) = 1 - i, up to a unit.