MTH 411: Midterm exam 1 Fall 2016

Duration: 50 min
No calculator allowed

Exercise 1:

1) Find all elements in the cyclic subgroup $\langle 4\rangle$ generated by 4 in U_{17}. What is the index of $\langle 4\rangle$ in U_{17} ?

Correction: Elements in $\langle 4\rangle$ are $\left\{1,4,4^{2}, \ldots\right\}$. We compute $4^{2} \equiv 16[17], 4^{3} \equiv 64 \equiv$ $13[17]$ and $4^{4} \equiv 52 \equiv 1$ [17]. So 4 has order 4 in U_{17} and

$$
\langle 4\rangle=\{1,4,16,13\}
$$

The index of $\langle 4\rangle$ in U_{17} is given by the formula $\left[U_{17}:\langle 4\rangle\right]=\frac{\left|U_{17}\right|}{|\langle 4\rangle|}$.
As 17 is prime, $U_{17}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}$ and $\left|U_{17}\right|=16$.
Thus the index is [$\left.U_{17}:\langle 4\rangle\right]=\frac{16}{4}=4$
2) Find all elements in the cyclic subgroup $\langle 10\rangle$ generated by 10 in \mathbb{Z}_{15}.

Show that $\mathbb{Z}_{15} /\langle 10\rangle \simeq \mathbb{Z}_{5}$
Correction: Elements in $\langle 10\rangle$ are $\{0,10,2 \cdot 10,3 \cdot 10 \ldots\}$. We compute $2 \cdot 10 \equiv 20 \equiv 5[15]$ and $3 \cdot 10 \equiv 30 \equiv 0[15]$. Thus 10 has order 3 in \mathbb{Z}_{15} and $\langle 10\rangle=\{0,5,10\}$. The order of $\mathbb{Z}_{15} /\langle 10\rangle$ is

$$
\left|\mathbb{Z}_{15} /\langle 10\rangle\right|=\frac{\left|\mathbb{Z}_{15}\right|}{|\langle 10\rangle|}=\frac{15}{3}=5
$$

Because this order is a prime number, we know that $\mathbb{Z}_{15} /\langle 10\rangle \simeq \mathbb{Z}_{5}$.

Exercise 2:

Let G be the set $\mathbb{R}^{*} \times \mathbb{R}$ and \cdot be the operation on G defined by

$$
(a, b) \cdot(c, d)=(a c, a d+b)
$$

1) Show that $(G, *)$ is a group.

Correction: The operation is internal because $a \neq 0$ and $c \neq 0$ implies that $a c \neq 0$.
Moreover, for any $(a, b) \in G,(a, b) \cdot(1,0)=(a, a \times 0+b)$ and $(1,0) \cdot(a, b)=(a, 1 \times b+0)=$ (a, b). Thus $(1,0)$ is an identity element for \cdot For $(a, b) \in G$, we have that

$$
(a, b)\left(\frac{1}{a},-\frac{b}{a}\right)=\left(\frac{a}{a},-a \frac{b}{a}+b\right)=(1,0)
$$

and

$$
\left(\frac{1}{a},-\frac{b}{a}\right)(a, b)=\left(\frac{a}{a}, \frac{b}{a}-\frac{b}{a}\right)=(1,0)
$$

Thus $\left(\frac{1}{a},-\frac{b}{a}\right)$ is the inverse of (a, b).
Finally, for $(a, b),(c, d)$ and (e, f) in G, we have

$$
(a, b)((c, d)(e, f))=(a, b)(c e, c f+d)=(a c e, a c f+a d+b)
$$

and

$$
((a, b)(c, d))(e, f)=(a c, a d+b)(e, f)=(a c e, a c f+a d+b)
$$

Thus the operation is associative.
2) Let $H=\{(1, x) / x \in \mathbb{R}\}$.

Show that H is a normal subgroup of G.
Correction: First we note that $(1,0) \in H$. If $(1, x)$ and $(1, y)$ are two elements in H then

$$
(1, x)(1, y)=(1, x+y) \in H
$$

and

$$
(1, x)^{-1}=(1,-x) \in H
$$

So H is a subgroup of G.
For any $(a, b) \in G$ and $(1, x) \in H$ we have:

$$
(a, b)(1, x)(a, b)^{-1}=(a, b)(1, x)\left(\frac{1}{a},-\frac{b}{a}\right)=(a, b)\left(\frac{1}{a}, x-\frac{b}{a}\right)=(1, a x) \in H
$$

Thus H is a normal subgroup of G.

Exercise 3:

Let G be a group of finite order and H and K be two subgroups of G.
1)Show that the intersection $H \cap K$ is a subgroup of G.

Correction: $e \in H$ and $e \in K$ so $e \in H \cap K$.
If x and y are in $H \cap K$ then $x y \in H$ and $x^{-1} \in H$ as H is a subgroup of G and $x y \in K$, $x^{-1} \in K$ as K is a subgroup of G. Thus $x y \in H \cap K$ and $x^{-1} \in H \cap K . H \cap K$ is thus a subgroup of G.
2) Using Lagrange's theorem, show that $|H \cap K|$ is a common divisor of $|H|$ and $|K|$.

Correction: By Lagrange theorem, if A is a subgroup of a finite group B then $|A|$
divides $|B|$. As $|H \cap K|$ is a subgroup of G, it is a group and thus a subgroup of both H and K. So the order $|H \cap K|$ divides the order of both subgroups: it is a common divisor of $|H|$ and $|K|$.

Exercise 4:

Let $\sigma=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 8 & 1 & 6 & 7 & 5 & 4\end{array}\right)$
Is σ^{411} even or odd?

Correction: $\sigma^{411}=\left(\sigma^{205}\right)^{2} \sigma$. The square of any permutation is always even, so σ^{411} is even if and only if σ is even.
Now the cycle decomposition of σ is $\sigma=(12384)(567)$. It is the product of a 3 -cycle and a 5 -cycle, which are both even permutations, so σ is even and so is σ^{411}.

